Multi Renewable Source Integrated Distribution System for Optimal Power Sharing with Synchronization to Grid

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1060
Author(s):  
Md Mamun Ur Rashid ◽  
Majed A. Alotaibi ◽  
Abdul Hasib Chowdhury ◽  
Muaz Rahman ◽  
Md. Shafiul Alam ◽  
...  

From a residential point of view, home energy management (HEM) is an essential requirement in order to diminish peak demand and utility tariffs. The integration of renewable energy sources (RESs) together with battery energy storage systems (BESSs) and central battery storage system (CBSS) may promote energy and cost minimization. However, proper home appliance scheduling along with energy storage options is essential to significantly decrease the energy consumption profile and overall expenditure in real-time operation. This paper proposes a cost-effective HEM scheme in the microgrid framework to promote curtailing of energy usage and relevant utility tariff considering both energy storage and renewable sources integration. Usually, the household appliances have different runtime preferences and duration of operation based on user demand. This work considers a simulator designed in the C++ platform to address the domestic customer’s HEM issue based on usages priorities. The positive aspects of merging RESs, BESSs, and CBSSs with the proposed optimal power sharing algorithm (OPSA) are evaluated by considering three distinct case scenarios. Comprehensive analysis of each scenario considering the real-time scheduling of home appliances is conducted to substantiate the efficacy of the outlined energy and cost mitigation schemes. The results obtained demonstrate the effectiveness of the proposed algorithm to enable energy and cost savings up to 37.5% and 45% in comparison to the prevailing methodology.


2014 ◽  
Vol 672-674 ◽  
pp. 1175-1178
Author(s):  
Guang Min Fan ◽  
Ling Xu Guo ◽  
Wei Liang ◽  
Hong Tao Qie

The increasingly serious energy crisis and environmental pollution problems promote the large-scale application of microgrids (MGs) and electric vehicles (EVs). As the main carrier of MGs and EVs, distribution network is gradually presenting multi-source and active characteristics. A fast service restoration method of multi-source active distribution network with MGs and EVs is proposed in this paper for service restoration of distribution network, which takes effectiveness, rapidity, economy and reliability into consideration. Then, different optimal power flow (OPF) models for the service restoration strategy are constructed separately to minimize the network loss after service restoration. In addition, a genetic algorithm was introduced to solve the OPF model. The analysis of the service restoration strategy is carried out on an IEEE distribution system with three-feeder and eighteen nodes containing MGs and EVs, and the feasibility and effectiveness are verified


2021 ◽  
Author(s):  
Agustin Tobias ◽  
Victor Cardenas ◽  
Juan Gonzalez-Rivera ◽  
Mario Gonzalez-Garcia ◽  
Fernando Quiroz-Vazquez ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4288 ◽  
Author(s):  
Md Mamun Ur Rashid ◽  
Fabrizio Granelli ◽  
Md. Alamgir Hossain ◽  
Md. Shafiul Alam ◽  
Fahad Saleh Al-Ismail ◽  
...  

The steady increase in energy demand for residential consumers requires an efficient energy management scheme. Utility organizations encourage household applicants to engage in residential energy management (REM) system. The utility’s primary goal is to reduce system peak load demand while consumer intends to reduce electricity bills. The benefits of REM can be enhanced with renewable energy sources (RESs), backup battery storage system (BBSS), and optimal power-sharing strategies. This paper aims to reduce energy usages and monetary cost for smart grid communities with an efficient home energy management scheme (HEMS). Normally, the residential consumer deals with numerous smart home appliances that have various operating time priorities depending on consumer preferences. In this paper, a cost-efficient power-sharing technique is developed which works based on priorities of appliances’ operating time. The home appliances are sorted on priority basis and the BBSS are charged and discharged based on the energy availability within the smart grid communities and real time energy pricing. The benefits of optimal power-sharing techniques with the RESs and BBSS are analyzed by taking three different scenarios which are simulated by C++ software package. Extensive case studies are carried out to validate the effectiveness of the proposed energy management scheme. It is demonstrated that the proposed method can save energy and reduce electricity cost up to 35% and 45% compared to the existing methods.


Author(s):  
Bedatri Moulik ◽  
Dirk Söffker

The need for the development of online powermanagement strategies applicable to real-time hybrid powertrain systems is an important issue in the transportation sector. A powermanagement strategy alone does not necessarily ensure optimal power distribution amongst the drive train components. Thus optimization of powemanagement is another task which needs to be considered in terms of multiple objectives. Apart from online applicability of powermanagement optimization, a consideration of useful combinations of drivetrain components such as two storage elements together with a primary source may also be useful. In this contribution, an online powermanagement strategy is applied to a three-source hybrid electric powertrain. An optimization of controller parameters with embedded-online optimization is proposed.


2013 ◽  
Vol 64 ◽  
pp. 546-551 ◽  
Author(s):  
V. Logeshwari ◽  
N. Chitra ◽  
A. Senthil Kumar ◽  
Josiah Munda

Sign in / Sign up

Export Citation Format

Share Document