scholarly journals Analysis of historical structures by using finite element method in Iznik Yeşil Mosque

2019 ◽  
Vol 5 (4) ◽  
pp. 121
Author(s):  
Aykut Uray ◽  
Hasan Selim Şengel ◽  
Serdar Çarbaş

In this study, non-destructive tests and laboratory tests were carried out in order to determine the material properties in Iznik Yeşil Mosque, Iznik District, Bursa Province. For the purpose of determining the soil characteristics of the building, the soil survey studies conducted in the Iznik Yeşil Mosque area were investigated. The finite element model was formed by making a three dimensional model study of the structure. With the finite element model, static analysis, modal analysis and behavioral spectrum analysis were performed under vertical loads in order to collect data for the damaged areas of the structure.

2015 ◽  
Vol 742 ◽  
pp. 603-607
Author(s):  
Xiu Li Yang ◽  
Lin Jing Qin ◽  
Feng Xiao Huang ◽  
Wen Jing Guo

The gyro-stabilized platform is one of the key parts of a guidance weapon. The structure performance of a platform influences the accuracy and reliability of the guidance weapon straightly. In order to reduce development cost and time, the structural modeling and analysis of gyro stabilized platform is very necessary. UG software is applied to establish the three-dimensional model of a platform firstly. And then some components are simplified using MSC Patron. According to the different connection mode between the components, some appropriate connecting elements are applied to establish the finite element model of the platform. In order to meet the special requirements of individual components, appropriate materials are selected so that the finite element model is closer to the actual situation which ensures the reliability of mode analysis and optimized computing results. The work in this paper provides reference for establishment of the similar structure finite element models.


1999 ◽  
Vol 122 (3) ◽  
pp. 569-575 ◽  
Author(s):  
Alejandro Felix ◽  
Shreyes N. Melkote ◽  
Yoichi Matsumoto

This paper addresses the modeling and prediction of the normal holding force in an electromagnetic chuck used in precision machining applications. Knowledge of the normal holding force is necessary to determine if a given chuck is capable of preventing workpiece slip during machining. First, an analytic model termed the magnetic circuit model was developed and compared with experimental holding force data. It was found that this model, although simple in form, was limited in its ability to accurately predict the holding force over the entire range of conditions investigated. The discrepancies in the model were attributed to its inability to accurately model the leakage flux and nonuniform distribution of the magnetic flux. A three-dimensional finite element model was then developed to overcome these limitations. Predictions with this model were found to be in better agreement with experiments, yielding prediction errors within 25 percent in most cases. The finite element model also provided an explanation for the observed decrease in the measured holding force at current values beyond a certain threshold. [S1087-1357(00)01503-3]


2011 ◽  
Vol 317-319 ◽  
pp. 2373-2377
Author(s):  
Guo Juan Shang ◽  
Gen Li Shan ◽  
Xi Juan Qi

Based on sufficient market research, a new model of self-unloading semi-trailer, whose maximum loading capacity is 30 tons, has been designed. The paper describes its overall structure, the three-dimensional diorama model and the finite element model of the frame. Based on the analysis of the models and the results of the calculation, the parameters of the frame are optimized. The advantages of the new design are as follows: the new design makes the most of the advantages of self-unloading trailers and semi-trailers, that is, self-unloading, security, stability, high efficiency, environmental protection.


2010 ◽  
Vol 26 (2) ◽  
pp. 156-163 ◽  
Author(s):  
Brian T. Rafferty ◽  
Malvin N. Janal ◽  
Ricardo A. Zavanelli ◽  
Nelson R.F.A. Silva ◽  
E. Dianne Rekow ◽  
...  

2014 ◽  
Vol 960-961 ◽  
pp. 1420-1423
Author(s):  
Zhi Dong Huang ◽  
Guo Fei Li ◽  
Juan Cong ◽  
Yun Wang ◽  
Wei Na Yu ◽  
...  

Based on Solidworks software, the three-dimensional model of two wheels scooter is set up. The finite element model of two wheels scooter is generated. Modal analysis of driving system and telescopic mechanism of bar on two wheels scooter is investigated. The first five orders natural frequency and major modes of driving system and telescopic mechanism of bar are clarified. The method and the result can be used as a reference of dynamic design and lay foundation for calculation and analysis of dynamic response for the two wheels scooter.


2011 ◽  
Vol 101-102 ◽  
pp. 1002-1005 ◽  
Author(s):  
Jing Zhao ◽  
Li Qun Lu

The process of multi-wedge cross wedge rolling is an advanced precision technology for forming long shaft parts such as automobile semi-axes. Three-dimensional solid model and the finite element model of semi-axes on automobile and dies of its cross wedge rolling were established. The process of cross wedge rolling was simulated according to the actual dimension of semi-axes on automobile utilizing the finite element method (FEM)software ANSYS/LS-DYNA. The required force parameters for designing semi-axes mill are determined. The appropriate roller width was determined according to the length and diameter of semi-axes on automobile. The results have provided the basis for the design of specific structure of automobile semi-axes cross wedge rolling mill.


2012 ◽  
Vol 482-484 ◽  
pp. 2454-2459 ◽  
Author(s):  
Xu Da Qin ◽  
Cui Lu ◽  
Qi Wang ◽  
Hao Li ◽  
Lin Jing Gui

Based on the analysis of the working principle and structure characteristics of helical milling unit, the prototype’s three-dimensional model was built, the prototype’s finite element modal analysis was conducted, and the first 6 natural frequencies and their mode shapes were obtained. The finite element model is experimentally validated by comparing finite element and experimental modal’s parameters. This paper investigates the dynamic properties of prototype, and provides theoretical references for the subsequent dynamic analysis and structural optimization.


Author(s):  
William C. Guttner ◽  
Caio C. P. Santos ◽  
Celso P. Pesce

Abstract Umbilical cables are fundamental equipment used in deep and ultra-deep waters oil and gas production systems. The complexity of this kind of structure leads structural analysis to be currently performed with numerical tools. This paper presents a nonlinear three-dimensional finite element model of a typical armored Steel Tube Umbilical Cable (STU) subjected to crushing loads imposed to the umbilical cable during laying operation. The study focuses on the analysis of the stress distribution in the steel tubes at caterpillar shoes, mainly at the entry/exit transition regions. With the use of a commercial software, the finite element model is constructed, considering geometric and materials nonlinearities. Crushing loads are imposed by two rigid plates. Focus is given on the duplex tubes, with the material stress-strain curve modeled from a specific crushing experiment with a single tube and by using a classic Ramberg-Osgood fitting. Firstly, comparisons at mid-length of the three-dimensional model are made with the results from a simpler and planar finite element model. Then, the localized three-dimensional effects are analyzed. The results show a considerable increase of the stress levels in the steel tubes at these transition regions, with the occurrence of stress field redistribution after the onset of plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document