scholarly journals Alternative construction of surface measure on a finite-dimensional space

2018 ◽  
Vol 2018 (1) ◽  
pp. 19-31
Author(s):  
Bohdan M. Snizhko
2005 ◽  
Vol 02 (03) ◽  
pp. 251-258
Author(s):  
HANLIN HE ◽  
QIAN WANG ◽  
XIAOXIN LIAO

The dual formulation of the maximal-minimal problem for an objective function of the error response to a fixed input in the continuous-time systems is given by a result of Fenchel dual. This formulation probably changes the original problem in the infinite dimensional space into the maximal problem with some restrained conditions in the finite dimensional space, which can be researched by finite dimensional space theory. When the objective function is given by the norm of the error response, the maximum of the error response or minimum of the error response, the dual formulation for the problems of L1-optimal control, the minimum of maximal error response, and the minimal overshoot etc. can be obtained, which gives a method for studying these problems.


Author(s):  
Jay L. Adams ◽  
Robert J. Veillette ◽  
Tom T. Hartley

This paper applies the Rayleigh-Ritz method to approximating the Hankel singular values of fractional-order systems. The algorithm is presented, and estimates of the first ten Hankel singular values of G(s) = 1/(sq+1) for several values of q ∈ (0, 1] are given. The estimates are computed by restricting the operator domain to a finite-dimensional space. The Hankel-norm estimates are found to be within 15% of the actual values for all q ∈ (0, 1].


1997 ◽  
pp. 13-27
Author(s):  
Mikhail I. Kadets ◽  
Vladimir M. Kadets

1992 ◽  
Vol 29 (4) ◽  
pp. 921-931 ◽  
Author(s):  
Mohsen Pourahmadi

By using the alternating projection theorem of J. von Neumann, we obtain explicit formulae for the best linear interpolator and interpolation error of missing values of a stationary process. These are expressed in terms of multistep predictors and autoregressive parameters of the process. The key idea is to approximate the future by a finite-dimensional space.


Author(s):  
G. F. Roach ◽  
I. G. Stratis ◽  
A. N. Yannacopoulos

This chapter presents rigorous mathematical results concerning the solvability and well posedness of time-harmonic problems for complex electromagnetic media, with a special emphasis on chiral media. It also presents some results concerning eigenvalue problems in cavities filled with complex electromagnetic materials. The chapter also studies the behaviour of the interior domain problem for a chiral medium in the limit of low chirality. Next, it presents some comments related to the well posedness and solvability of exterior problems. Finally, using an appropriate finite-dimensional space and the variational formulation of the discretised version of the original boundary value problem, this chapter obtains numerical methods for the solution of the Maxwell equations for chiral media.


1985 ◽  
Vol 37 (1) ◽  
pp. 160-192 ◽  
Author(s):  
Ola Bratteli ◽  
Frederick M. Goodman

Let G be a compact Lie group and a an action of G on a C*-algebra as *-automorphisms. Let denote the set of G-finite elements for this action, i.e., the set of those such that the orbit {αg(x):g ∊ G} spans a finite dimensional space. is a common core for all the *-derivations generating one-parameter subgroups of the action α. Now let δ be a *-derivation with domain such that Let us pose the following two problems:Is δ closable, and is the closure of δ the generator of a strongly continuous one-parameter group of *-automorphisms?If is simple or prime, under what conditions does δ have a decompositionwhere is the generator of a one-parameter subgroup of α(G) and is a bounded, or approximately bounded derivation?


1973 ◽  
Vol 10 (03) ◽  
pp. 502-509 ◽  
Author(s):  
R. L. Hudson

A quantum-mechanical central limit theorem for sums of pairwise anti-commuting representations of the canonical anti-commutation relations over a finite-dimensional space is formulated and proved.


Sign in / Sign up

Export Citation Format

Share Document