General methods of forecasting nonlinear nonstationary processes based on mathematical models using statistical data
The article considers the problem of forecasting nonlinear nonstationary processes, presented in the form of time series, which can describe the dynamics of processes in both technical and economic systems. The general technique of analysis of such data and construction of corresponding mathematical models based on autoregressive models and recurrent neural networks is described in detail. The technique is applied on practical examples while performing the comparative analysis of models of forecasting of quantity of channels of service of cellular subscribers for a given station and revealing advantages and disadvantages of each method. The need to improve the existing methodology and develop a new approach is formulated.