scholarly journals Cantor Type Basic Sets of Surface $A$-endomorphisms

2021 ◽  
Vol 17 (3) ◽  
pp. 335-345
Author(s):  
V. Z. Grines ◽  
◽  
E. V. Zhuzhoma ◽  

The paper is devoted to an investigation of the genus of an orientable closed surface $M^{2}$ which admits $A$-endomorphisms whose nonwandering set contains a one-dimensional strictly invariant contracting repeller $\Lambda_{r}$ with a uniquely defined unstable bundle and with an admissible boundary of finite type. First, we prove that, if $M^{2}$ is a torus or a sphere, then $M^{2}$ admits such an endomorphism. We also show that, if $\Omega$ is a basic set with a uniquely defined unstable bundle of the endomorphism $f\colon M^{2}\to M^{2}$ of a closed orientable surface $M^{2}$ and $f$ is not a diffeomorphism, then $\Omega$ cannot be a Cantor type expanding attractor. At last, we prove that, if $f\colon M^{2}\to M^{2}$ is an $A$-endomorphism whose nonwandering set consists of a finite number of isolated periodic sink orbits and a one-dimensional strictly invariant contracting repeller of Cantor type $\Omega_{r}$ with a uniquely defined unstable bundle and such that the lamination consisting of stable manifolds of $\Omega_{r}$ is regular, then $M^{2}$ is a two-dimensional torus $\mathbb{T}^{2}$ or a two-dimensional sphere $\mathbb{S}^{2}$.

2020 ◽  
Vol 16 (4) ◽  
pp. 595-606
Author(s):  
V.Z. Grines ◽  
◽  
E.V. Kruglov ◽  
O.V. Pochinka ◽  
◽  
...  

This paper is devoted to the topological classification of structurally stable diffeomorphisms of the two-dimensional torus whose nonwandering set consists of an orientable one-dimensional attractor and finitely many isolated source and saddle periodic points, under the assumption that the closure of the union of the stable manifolds of isolated periodic points consists of simple pairwise nonintersecting arcs. The classification of one-dimensional basis sets on surfaces has been exhaustively obtained in papers by V. Grines. He also obtained a classification of some classes of structurally stable diffeomorphisms of surfaces using combined algebra-geometric invariants. In this paper, we distinguish a class of diffeomorphisms that admit purely algebraic differentiating invariants.


2020 ◽  
pp. 1-10
Author(s):  
MARK GRANT ◽  
AGATA SIENICKA

Abstract The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.


2020 ◽  
pp. 2150006
Author(s):  
Denis Bonheure ◽  
Jean Dolbeault ◽  
Maria J. Esteban ◽  
Ari Laptev ◽  
Michael Loss

This paper is devoted to a collection of results on nonlinear interpolation inequalities associated with Schrödinger operators involving Aharonov–Bohm magnetic potentials, and to some consequences. As symmetry plays an important role for establishing optimality results, we shall consider various cases corresponding to a circle, a two-dimensional sphere or a two-dimensional torus, and also the Euclidean spaces of dimensions 2 and 3. Most of the results are new and we put the emphasis on the methods, as very little is known on symmetry, rigidity and optimality in the presence of a magnetic field. The most spectacular applications are new magnetic Hardy inequalities in dimensions [Formula: see text] and [Formula: see text].


1997 ◽  
Vol 17 (3) ◽  
pp. 575-591 ◽  
Author(s):  
H. ERIK DOEFF

We extend the theory of rotation vectors to homeomorphisms of the two-dimensional torus that are homotopic to a Dehn twist. We define a one-dimensional rotation number and recreate the theory of the homotopic case to the identity case. We prove that if such a map is area preserving and has mean rotation number zero, then it must have a fixed point. We prove that the rotation set is a compact interval, and that if the rotation interval contains two distinct numbers, then for any rational number in the rotation set there exists a periodic point with that rotation number. Finally, we prove that any interval with rational endpoints can be realized as the rotation set of a map homotopic to a Dehn twist.


Author(s):  
Sergey V. Sidorov ◽  
Ekaterina E. Chilina

Abstract. This paper contains a complete classification of algebraic non-hyperbolic automorphisms of a two-dimensional torus, announced by S. Batterson in 1979. Such automorphisms include all periodic automorphisms. Their classification is directly related to the topological classification of gradient-like diffeomorphisms of surfaces, since according to the results of V. Z. Grines and A.N. Bezdenezhykh, any gradient like orientation-preserving diffeomorphism of an orientable surface is represented as a superposition of the time-1 map of a gradient-like flow and some periodic homeomorphism. J. Nielsen found necessary and sufficient conditions for the topological conjugacy of orientation-preserving periodic homeomorphisms of orientable surfaces by means of orientation-preserving homeomorphisms. The results of this work allow us to completely solve the problem of realization all classes of topological conjugacy of periodic maps that are not homotopic to the identity in the case of a torus. Particularly, it follows from the present paper and the work of that if the surface is a two-dimensional torus, then there are exactly seven such classes, each of which is represented by algebraic automorphism of a two-dimensional torus induced by some periodic matrix.


Author(s):  
Vyacheslav Z. Grines ◽  
Evgenii V. Zhuzhoma

Recently the authors of the article discovered a meaningful class of non-reversible endomorphisms on a two-dimensional torus. A remarkable property of these endomorphisms is that their non-wandering sets contain nontrivial one-dimensional strictly invariant hyperbolic basic sets (in the terminology of S. Smale and F. Pshetitsky) which have the uniqueness of an unstable one-dimensional bundle. It was proved that nontrivial (other than periodic isolated orbits) invariant sets can only be repellers. Note that this is not the case for reversible endomorphisms (diffeomorphisms). In the present paper, it is proved that one-dimensional expanding uniquely hyperbolic and strictly invariant one-dimensional expanding attractors and one-dimensional contracting repellers of non-reversible A-endomorphisms of closed orientable surfaces have the local structure of the product of an interval by a zero-dimensional closed set (finite or Cantor). This result contrasts with the existence of one-dimensional fractal repellers arising in complex dynamics on the Riemannian sphere and not possessing the properties of the existence of a single one-dimensional unstable bundle.


1981 ◽  
Vol 1 (3) ◽  
pp. 255-260 ◽  
Author(s):  
Paul Blanchard ◽  
John Franks

AbstractLet M be a two-dimensional, compact manifold and g:Μ→ΜM be a diffeomorphism with a hyperbolic chain recurrent set. We find restrictions on the reduced zeta function p(t) of anyzero-dimensional basic set of g. If deg (p(t)) is odd, then p(1) = 0 (in ). Since there are infinitely many subshifts of finite type whose reduced zeta functions do not satisfy these restrictions, there are infinitely many subshifts which cannot be basic sets for any diffeomorphism of any surface.


Sign in / Sign up

Export Citation Format

Share Document