scholarly journals Elaboration of quantitative method of Mediborol in its medical product

2011 ◽  
Vol 10 (5) ◽  
pp. 145-149
Author(s):  
Ye. A. Krasnov ◽  
V. A. Shelekhova

Possibility of quantitative definition of mediborol in oil solutions is shown by the method of Firordta and least-squares method for spectrophotometric analysis. The developed technique appreciably allows us to increase the measurement accuracy as compared with the direct spectrophotometric analysis. The error of the analysis does not exceed 1,36% for solution of mediborol in peachy oil and 0,83% in olive oil.

2020 ◽  
Vol 963 (9) ◽  
pp. 2-13
Author(s):  
H.M Hatoum ◽  
M.G. Mustafin

Monitoring deformation processes is directly related to safety and carried out therefore with high measurement accuracy. In this case, high-precision equipment and tools are accordingly used. Following the interstate standard of measuring deformations of buildings and structures foundations on sandy clay soils, the permissible error in measuring displacements should not exceed 1 mm with calculated values of vertical or horizontal displacements up to 100 mm. In this regard, monitoring the structures’ deformations is carried out under a program that provides selecting the initial geodetic signs location. Currently, the use of robotic stations for tracking the displacements of various objects’ elements has gained wide popularity. Of course, permanent observations look preferable, first, because there aren’t any intervals in observations during which the negative development of the process can be missed. However, the matter of locating the station remains relevant. The authors provide an analysis of approaches to solving this task. The use of Distance-Angle resection is considered. The constraints of its use are shown. The results of applying the least-squares method are presented. A particular practical example demonstrates the methodology of selecting and evaluating the location accuracy of a monitoring station.


1980 ◽  
Vol 59 (9) ◽  
pp. 8
Author(s):  
D.E. Turnbull

2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Maysam Abedi

The presented work examines application of an Augmented Iteratively Re-weighted and Refined Least Squares method (AIRRLS) to construct a 3D magnetic susceptibility property from potential field magnetic anomalies. This algorithm replaces an lp minimization problem by a sequence of weighted linear systems in which the retrieved magnetic susceptibility model is successively converged to an optimum solution, while the regularization parameter is the stopping iteration numbers. To avoid the natural tendency of causative magnetic sources to concentrate at shallow depth, a prior depth weighting function is incorporated in the original formulation of the objective function. The speed of lp minimization problem is increased by inserting a pre-conditioner conjugate gradient method (PCCG) to solve the central system of equation in cases of large scale magnetic field data. It is assumed that there is no remanent magnetization since this study focuses on inversion of a geological structure with low magnetic susceptibility property. The method is applied on a multi-source noise-corrupted synthetic magnetic field data to demonstrate its suitability for 3D inversion, and then is applied to a real data pertaining to a geologically plausible porphyry copper unit.  The real case study located in  Semnan province of  Iran  consists  of  an arc-shaped  porphyry  andesite  covered  by  sedimentary  units  which  may  have  potential  of  mineral  occurrences, especially  porphyry copper. It is demonstrated that such structure extends down at depth, and consequently exploratory drilling is highly recommended for acquiring more pieces of information about its potential for ore-bearing mineralization.


2020 ◽  
Vol 2020 (9) ◽  
pp. 35-46
Author(s):  
Aleksandr Skachkov ◽  
Viktor Vasilevskiy ◽  
Aleksey Yuhnevskiy

The consideration of existing methods for a modal analysis has shown a possibility for the lowest frequency definition of bending vibrations in a coach car body in a vertical plane based on an indirect method reduced to the assessment of the bending stiffness of the one-dimensional model as a Bernoulli-Euler beam with fragment-constant parameters. The assessment mentioned can be obtained by means of the comparison of model deflections (rated) and a prototype (measured experimentally upon a natural body) with the use of the least-squares method that results in the necessity of the solution of the multi-dimensional problem with the reverse coefficient. The introduction of the hypothesis on ratability of real bending stiffness of the prototype and easily calculated geometrical stiffness of a model reduces a multi-dimensional problem incorrect according to Adamar to the simplest search of the extremum of one variable function. The procedure offered for the indirect assessment of bending stiffness was checked through the solution of model problems. The values obtained are offered to use for the assessment of the lowest frequency of bending vibrations with the aid of Ritz and Grammel methods. In case of rigid poles it results in formulae for frequencies into which there are included directly the experimental values of deflections.


1984 ◽  
Vol 49 (4) ◽  
pp. 805-820
Author(s):  
Ján Klas

The accuracy of the least squares method in the isotope dilution analysis is studied using two models, viz a model of a two-parameter straight line and a model of a one-parameter straight line.The equations for the direct and the inverse isotope dilution methods are transformed into linear coordinates, and the intercept and slope of the two-parameter straight line and the slope of the one-parameter straight line are evaluated and treated.


Sign in / Sign up

Export Citation Format

Share Document