high measurement accuracy
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 8)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 15 (4) ◽  
pp. 537-545
Author(s):  
Kazuhide Tanaka ◽  
◽  
Dan Nakaya ◽  
Yuki Kondo ◽  
Ichiro Yoshida

In electric power stations, precision surface roughness measurements are performed for environmental loading reduction, quality assurance, and safety. These measurements are performed manually at high places, narrow places, uncomfortable environments, etc. Therefore, workers in power stations experience a lot of hardship and are exposed to danger. To solve these issues, this study researched and developed a crawler-type robot with high measurement accuracy. Conventionally, robots that supply workpieces for surface roughness instruments have been developed. However, to the best of our knowledge, robotization and self-propelled precision measurement instruments have not been developed. Usually, a precision measurement instrument is designed for increased stiffness and stability because high measurement accuracy is the highest priority. However, if the stiffness and stability of the robot are as high as those of the precision measurement instrument, a problem occurs in the robot operation. Therefore, we propose a precision measurement unit using electromagnets and a crawler-type self-propelled robot to equip the unit. In a previous study, vibration analysis experiments using the impulse response method were performed on a precision measuring robot. In this study, the relationships between the voltages applied to the electromagnet and the reductions in the vibration magnitudes were determined by analyzing the vibrations of the robot during measurement. Furthermore, an optimal voltage of the electromagnets of the precision measuring robot to reduce vibrations was determined. From the results of the vibration analysis, the authors demonstrated that the optimal voltages were 9 and 12 V, and the precision measurement unit confirmed the effectiveness and validity of vibration reduction and improved measurement accuracy.


2021 ◽  
Vol 38 (3) ◽  
pp. 555-564
Author(s):  
Bedr-Eddine Benaissa ◽  
Fedoua Lahfa ◽  
Khatir Naima ◽  
Giulio Lorenzini ◽  
Mustafa Inc ◽  
...  

In a sensor network, and more specifically with a single-hop deployment policy, sensor measurements contain a lot of redundancy either in the measurement dimensions of a single sensor, or between the measurement dimensions of different sensors due to of the spatial correlation either in the temporal dimension of the measurements. The goal is to reduce this redundancy by deploying fewer sensors, while ensuring high measurement accuracy and maximizing service life. The proposed method minimizes the complexity in terms of communication and calculation and maximizes the lifetime of the network based on an aggregation and consensus system to reduce the spatio-temporal dimension of the data captured and consequently the number of sensors deployed. The results show a visible performance compared to the standard method of transmission on the free platform of the COOJA/Contiki simulator allowing to simulate network connections of wireless sensors and to interact with them.


Author(s):  
Ningxiao Zhang ◽  
Randall McEntaffer ◽  
Ross McCurdy ◽  
Casey DeRoo

We present a new, inexpensive, bench-top method for measuring groove period over large areas with high mapping resolution and high measurement accuracy, dubbed the grating mapper for accurate period (GMAP). The GMAP has the ability to measure large groove period changes and nonparallel grooves, both of which cannot be measured via optical interferometry. In this paper, we detail the calibration and setup of the GMAP, and employ the instrument to measure three distinct gratings. Two of these measured gratings have customized groove patterns that prevent them from being measured via other traditional methods, such as optical interferometry. Our implementation of this tool achieves a spatial resolution of 0.1[Formula: see text]mm[Formula: see text][Formula: see text][Formula: see text]0.1[Formula: see text]mm and a period error of 1.7[Formula: see text]nm for a 3[Formula: see text][Formula: see text]m size groove period.


2021 ◽  
pp. 67-71
Author(s):  
Dmitry V. Petrov ◽  
Ivan I. Matrosov ◽  
Alexey R. Zaripov ◽  
Aleksandr S. Tanichev ◽  
Matvey A. Kostenko ◽  
...  

The advantages of the Raman spectroscopy method in comparison with gas chromatography in the analysis of the composition of natural gas are described. The metrological characteristics of a Raman gas analyzer developed at the Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences have been studied. A series of measurements were carried out on three natural gas simulators with different concentrations of components. It is shown that Raman gas analyzers are capable of providing high measurement accuracy, close to that of gas chromatographs when analyzing components with a low molar fraction (0.001–0.010 %). It is noted that when analyzing components with a molar fraction in the range of 0.01–100.00 %, the accuracy of the proposed Raman gas analyzer surpassed the accuracy of gas chromatographs.


2020 ◽  
Vol 963 (9) ◽  
pp. 2-13
Author(s):  
H.M Hatoum ◽  
M.G. Mustafin

Monitoring deformation processes is directly related to safety and carried out therefore with high measurement accuracy. In this case, high-precision equipment and tools are accordingly used. Following the interstate standard of measuring deformations of buildings and structures foundations on sandy clay soils, the permissible error in measuring displacements should not exceed 1 mm with calculated values of vertical or horizontal displacements up to 100 mm. In this regard, monitoring the structures’ deformations is carried out under a program that provides selecting the initial geodetic signs location. Currently, the use of robotic stations for tracking the displacements of various objects’ elements has gained wide popularity. Of course, permanent observations look preferable, first, because there aren’t any intervals in observations during which the negative development of the process can be missed. However, the matter of locating the station remains relevant. The authors provide an analysis of approaches to solving this task. The use of Distance-Angle resection is considered. The constraints of its use are shown. The results of applying the least-squares method are presented. A particular practical example demonstrates the methodology of selecting and evaluating the location accuracy of a monitoring station.


2019 ◽  
Vol 19 (22) ◽  
pp. 10506-10512 ◽  
Author(s):  
Li Xiong ◽  
Yongxing Guo ◽  
Guozhang Jiang ◽  
Lin Jiang ◽  
Xinglin Zhou

2016 ◽  
Vol 120 (16) ◽  
pp. 164506 ◽  
Author(s):  
Dong F. Wang ◽  
Xiaodong Li ◽  
Weikang Xian ◽  
Huan Liu ◽  
Xin Liu

2015 ◽  
Vol 15 (5) ◽  
pp. 236-243 ◽  
Author(s):  
Jun Luo ◽  
Zhiqian Wang ◽  
Chengwu Shen ◽  
Zhuoman Wen ◽  
Shaojin Liu ◽  
...  

AbstractThis paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.


Sign in / Sign up

Export Citation Format

Share Document