scholarly journals Multi-seasonal effects of warming and elevated CO2 on the physiology, growth and production of mature, field grown, Shiraz grapevines

OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 127 ◽  
Author(s):  
Everard J. Edwards ◽  
Dale Unwin ◽  
Rachel Kilmister ◽  
Michael Treeby

<p style="text-align: justify;"><strong>Abstract:</strong> Industry concerns in Australia about the impacts of climate change have, to date, focused on the effects of warming, particularly shorter maturation periods. The effects of elevated CO<sub>2</sub> concentration (eCO<sub>2</sub>) on C<sub>3</sub> plant physiology have been extensively studied and suggest that eCO<sub>2 </sub>impacts on viticulture could affect grapevine shoot growth, fruit production and fruit composition. We previously used open top chambers (OTC) with an active heating system to study the effects of elevated air temperature (eTemp) on mature grapevines in the field. This system was augmented with the ability to elevate atmospheric CO<sub>2 </sub>and established in a mature Shiraz vineyard in a factorial combination of eTemp and eCO<sub>2</sub>. Three seasons of observations on the eTemp only treatment corroborated our previous study; all aspects of phenology were advanced, but leaf function was largely unaffected. In contrast, the effects of eCO<sub>2</sub> on phenology were small in the first season, but increased over the subsequent two seasons. Interactive effects of the treatments on gas exchange were observed; photosynthesis rates were significantly higher in the eCO<sub>2</sub>+eTemp treatment, compared to eCO<sub>2</sub> alone, suggesting that the likely future climate will have a larger impact on viticulture than might be predicted from experiments examining only one of these factors.</p>

OENO One ◽  
2017 ◽  
Vol 51 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Everard J. Edwards ◽  
Dale Unwin ◽  
Rachel Kilmister ◽  
Michael Treeby

Abstract: Industry concerns in Australia about the impacts of climate change have, to date, focused on the effects of warming, particularly shorter maturation periods. The effects of elevated CO2 concentration (eCO2) on C3 plant physiology have been extensively studied and suggest that eCO2 impacts on viticulture could affect grapevine shoot growth, fruit production and fruit composition. We previously used open top chambers (OTC) with an active heating system to study the effects of elevated air temperature (eTemp) on mature grapevines in the field. This system was augmented with the ability to elevate atmospheric CO2 and established in a mature Shiraz vineyard in a factorial combination of eTemp and eCO2. Three seasons of observations on the eTemp only treatment corroborated our previous study; all aspects of phenology were advanced, but leaf function was largely unaffected. In contrast, the effects of eCO2 on phenology were small in the first season, but increased over the subsequent two seasons. Interactive effects of the treatments on gas exchange were observed; photosynthesis rates were significantly higher in the eCO2+eTemp treatment, compared to eCO2 alone, suggesting that the likely future climate will have a larger impact on viticulture than might be predicted from experiments examining only one of these factors.


2015 ◽  
Vol 61 (4) ◽  
pp. 641-652 ◽  
Author(s):  
Marie E. Delorenzo

Abstract Global climate change effects will vary geographically, and effects on estuaries should be independently considered. This review of the impacts of climate change on the ecotoxicology of chemical contaminants aims to summarize responses that are specific to estuarine species. Estuarine organisms are uniquely adapted to large fluctuations in temperature, salinity, oxygen, and pH, and yet future changes in climate may make them more susceptible to chemical contaminants. Recent research has highlighted the interactive effects of chemical and nonchemical stressors on chemical uptake, metabolism, and organism survival. Assessments have revealed that the nature of the interaction between climate variables and chemical pollution will depend on estuarine species and life stage, duration and timing of exposure, prior stressor exposure, and contaminant class. A need for further research to elucidate mechanisms of toxicity under different abiotic conditions and to incorporate climate change factors into toxicity testing was identified. These efforts will improve environmental risk assessment of chemical contaminants and management capabilities under changing climate conditions.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1463
Author(s):  
Teresa R. Freitas ◽  
João A. Santos ◽  
Ana P. Silva ◽  
Hélder Fraga

The chestnut tree (Castanea spp.) is an important resource worldwide. It is cultivated due to the high value of its fruits and wood. The evolution between Castanea biodiversity and humans has resulted in the spread of chestnut genetic diversity. In 2019, the chestnut tree area worldwide was approximately 596 × 103 ha for fruit production (Southern Europe, Southwestern United States of America, and Asia). In Europe 311 × 103 t were produced. Five genetic poles can be identified: three in Greece, the northwest coast of the Iberian Peninsula, and the rest of the Mediterranean. Over the years, there have been some productivity changes, in part associated with climate change. Climate is considered one of the main drivers of biodiversity and ecosystem change. In the future, new challenges associated with climate change are expected, which could threaten this crop. It is essential to identify the impacts of climate change on chestnut trees, improving the current understanding of climate-tree interconnections. To deal with these projected changes adaptation strategies must be planned. This manuscript demonstrates the impacts of climate change on chestnut cultivation, reviewing the most recent studies on the subject. Furthermore, an analysis of possible adaptation strategies against the potentially negative impacts was studied.


2017 ◽  
Vol 115 (1) ◽  
pp. 145-150 ◽  
Author(s):  
Charlene Janion-Scheepers ◽  
Laura Phillips ◽  
Carla M. Sgrò ◽  
Grant A. Duffy ◽  
Rebecca Hallas ◽  
...  

Soil systems are being increasingly exposed to the interactive effects of biological invasions and climate change, with rising temperatures expected to benefit alien over indigenous species. We assessed this expectation for an important soil-dwelling group, the springtails, by determining whether alien species show broader thermal tolerance limits and greater tolerance to climate warming than their indigenous counterparts. We found that, from the tropics to the sub-Antarctic, alien species have the broadest thermal tolerances and greatest tolerance to environmental warming. Both groups of species show little phenotypic plasticity or potential for evolutionary change in tolerance to high temperature. These trait differences between alien and indigenous species suggest that biological invasions will exacerbate the impacts of climate change on soil systems, with profound implications for terrestrial ecosystem functioning.


2016 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

2014 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document