scholarly journals Impact of DNA purification method and primer selection on 16S rRNA gene metabarcoding on wine

OENO One ◽  
2019 ◽  
Vol 53 (3) ◽  
Author(s):  
Francesco Cerutti ◽  
Diego Cravero ◽  
Antonella Costantini ◽  
Laura Pulcini ◽  
Paola Modesto ◽  
...  

Aim: The high-throughput sequencing methods have revolutionized the study of the microbiota in different matrices including those of the grapevine production chain. DNA extraction is a crucial step in the sample processing. In this study, we compared different DNA purification methods and two primer sets for 16S rRNA gene metabarcoding to evaluate the best protocol to explore the wine microbiota by metabarcoding.Methods and results: We collected a wine from Barbera grapes after malolactic fermentation previously inoculated by Oenococcus oeni starter. The same sample was used to evaluate the best performing protocol to study the wine microbiota. DNA was purified using nine different methods and then amplified for the 16S rRNA gene with two primer sets (according to Illumina or Earth Microbiome Project protocols). The obtained amplicons were then sequenced in a single sequencing session on an Illumina MiSeq. We evaluated the best protocol considering DNA concentration and purity, alpha (Observed species) and beta diversity from metabarcoding analysis.The sequencing generated 36,031,756 reads in total. Although no statistically significant difference was observed between purification methods or primer sets, better results were obtained with phenol-chloroform DNA purification combined to Earth Microbiome Project primers.Metabarcoding was able to highlight the domination of the inoculum, O. oeni, representing the main species of the analyzed wine microbiota.Conclusion: Our data show that, for the tested wine, metabarcoding output is more influenced by the primer set than by the DNA purification method. Moreover, the metabarcoding detected that O. oeni represents the main species, evidencing the domination of the inoculum done with lyophilized commercial preparation of this species. Other lactic acid bacteria are present at a much lower abundance.Significance and impact of the study: This is the first report applying the 16S rRNA gene metabarcoding to study the microbiota of wine. For this reason, the evaluation of alternative methods for DNA processing is essential for future research using this innovative methodology.

2011 ◽  
Vol 78 (3) ◽  
pp. 752-758 ◽  
Author(s):  
Harry R. Harhangi ◽  
Mathilde Le Roy ◽  
Theo van Alen ◽  
Bao-lan Hu ◽  
Joost Groen ◽  
...  

ABSTRACTAnaerobic ammonium-oxidizing (anammox) bacteria play an important role in the biogeochemical cycling of nitrogen. They derive their energy for growth from the conversion of ammonium and nitrite into dinitrogen gas in the complete absence of oxygen. Several methods have been used to detect the presence and activity of anammox bacteria in the environment, including 16S rRNA gene-based approaches. The use of the 16S rRNA gene to study biodiversity has the disadvantage that it is not directly related to the physiology of the target organism and that current primers do not completely capture the anammox diversity. Here we report the development of PCR primer sets targeting a subunit of the hydrazine synthase (hzsA), which represents a unique phylogenetic marker for anammox bacteria. The tested primers were able to retrievehzsAgene sequences from anammox enrichment cultures, full-scale anammox wastewater treatment systems, and a variety of freshwater and marine environmental samples, covering all known anammox genera.


2005 ◽  
Vol 51 (11) ◽  
pp. 957-966 ◽  
Author(s):  
Keya Sen

Existing biochemical methods cannot distinguish among some species of Aeromonads, while genetic methods are labor intensive. In this study, primers were developed to three genes of Aeromonas: lipase, elastase, and DNA gyraseB. In addition, six previously described primer sets, five corresponding to species-specific signature regions of the 16S rRNA gene from A. veronii, A. popoffii, A. caviae, A. jandaei, and A. schubertii, respectively, and one corresponding to A. hydrophila specific lipase (hydrolipase), were chosen. The primer sets were combined in a series of multiplex-PCR (mPCR) assays against 38 previously characterized strains. Following PCR, each species was distinguished by the production of a unique combination of amplicons. When the assays were tested using 63 drinking water isolates, there was complete agreement in the species identification (ID) for 59 isolates, with ID established by biochemical assays. Sequencing the gyrB and the 16S rRNA gene from the remaining four strains established that the ID obtained by mPCR was correct for three strains. For only one strain, no consensus ID could be obtained. A rapid and reliable method for identification of different Aeromonas species is proposed that does not require restriction enzyme digestions, thus simplifying and speeding up the process.Key words: Aeromonas, multiplex-PCR, identification.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


Sign in / Sign up

Export Citation Format

Share Document