RVE-based multiscale modeling for the Navier-Stokes equations: linking continuum and Lattice-Boltzmann models

Author(s):  
Pablo Blanco ◽  
Andrés Valdez ◽  
Alejandro Clausse ◽  
Raúl Feijóo
2005 ◽  
Vol 16 (01) ◽  
pp. 61-84 ◽  
Author(s):  
H. W. ZHENG ◽  
C. SHU ◽  
Y. T. CHEW ◽  
J. QIU

This paper presents a platform to develop new lattice Boltzmann models. It gives a general framework for different applications. It also presents basic velocity models and a set of basic conditions to construct new models which can recover Navier–Stokes equations. Besides, the equilibrium function can be easily obtained through a set of equations. By using the platform, we can easily recover the existing models. Some new models are derived from the platform and validated by their application to simulate the two-dimensional driven cavity flow. The obtained numerical results agree very well with available data in the literature.


Author(s):  
Sauro Succi

The Lattice Boltzmann method was originally devised as a computational alternative for the simulation of macroscopic flows, as described by the Navier–Stokes equations of continuum mechanics. In many respects, this still is the main place where it belongs today. Yet, in the past decade, LB has made proof of a largely unanticipated versatility across a broad spectrum of scales, from fully developed turbulence, to microfluidics, all the way down to nanoscale flows. Even though no systematic analogue of the Chapman–Enskog asymptotics is available in this beyond-hydro region (no guarantee), the fact remains that, with due extensions of the basic scheme, the LB has proven capable of providing several valuable insights into the physics of flows at micro- and nano-scales. This does not mean that LBE can solve the actual Boltzmann equation or replace Molecular Dynamics, but simply that it can provide useful insights into some flow problems which cannot be described within the realm of the Navier–Stokes equations of continuum mechanics. This Chapter provides a cursory view of this fast-growing front of modern LB research.


Author(s):  
Joris C. G. Verschaeve

By means of the continuity equation of the incompressible Navier–Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.


Author(s):  
Giuseppina Colicchio ◽  
Claudio Lugni ◽  
Marilena Greco ◽  
Odd M. Faltinsen

A Domain-Decomposition (DD) strategy is proposed for problems involving regions with slow variations of the flow (A) and others where the fluid features undergo rapid changes (B), like in the case of steady current past bodies with pronounced local unsteadiness connected with the vortex shedding from the structures. For an efficient and accurate solution of such problems, the DD couples a Finite Difference solver of the Navier-Stokes equations (FD-NS) with a Multiple Relaxation Time Lattice Boltzmann method (MRT-LBM). Regions A are handled by FD-NS, while zones B are solved by MRT-LBM and the two solvers exchange information within a strong coupling strategy. Present DD strategy is able to deal with a dynamic change of the sub-domains topology. This feature is needed when regions with vorticity shed from the body vary in time for a more flexible and reliable solution strategy. Its performances in terms of accuracy and efficiency have been successfully assessed by comparing the hybrid solver against a full FD-NS solution and experimental data for a 2D circular cylinder in an impulsively started flow.


Author(s):  
Marc-Florian Uth ◽  
Alf Crüger ◽  
Heinz Herwig

In micro or nano flows a slip boundary condition is often needed to account for the special flow situation that occurs at this level of refinement. A common model used in the Finite Volume Method (FVM) is the Navier-Slip model which is based on the velocity gradient at the wall. It can be implemented very easily for a Navier-Stokes (NS) Solver. Instead of directly solving the Navier-Stokes equations, the Lattice-Boltzmann method (LBM) models the fluid on a particle basis. It models the streaming and interaction of particles statistically. The pressure and the velocity can be calculated at every time step from the current particle distribution functions. The resulting fields are solutions of the Navier-Stokes equations. Boundary conditions in LBM always not only have to define values for the macroscopic variables but also for the particle distribution function. Therefore a slip model cannot be implemented in the same way as in a FVM-NS solver. An additional problem is the structure of the grid. Curved boundaries or boundaries that are non-parallel to the grid have to be approximated by a stair-like step profile. While this is no problem for no-slip boundaries, any other velocity boundary condition such as a slip condition is difficult to implement. In this paper we will present two different implementations of slip boundary conditions for the Lattice-Boltzmann approach. One will be an implementation that takes advantage of the microscopic nature of the method as it works on a particle basis. The other one is based on the Navier-Slip model. We will compare their applicability for different amounts of slip and different shapes of walls relative to the numerical grid. We will also show what limits the slip rate and give an outlook of how this can be avoided.


Sign in / Sign up

Export Citation Format

Share Document