FE model for physical and geometrical nonlinear analysis of three dimensional frames of reinforced concrete buildings

Author(s):  
Elisabeth Junges ◽  
Henriette Lebre La Rovere
2018 ◽  
Vol 12 (03) ◽  
pp. 1850008 ◽  
Author(s):  
Satish Bhagat ◽  
Anil C. Wijeyewickrema

In this paper, the seismic collapse probability of base-isolated reinforced concrete buildings considering pounding with a moat wall and financial loss estimation is studied. For this purpose, three-dimensional finite element models of a code-compliant 10-story base-isolated shear wall-frame (BI-SWF) building and a 10-story base-isolated moment resisting frame (BI-MRF) building are used. Results indicate that the BI-MRF building has a greater probability of collapse compared to that of the BI-SWF building, the probability of collapse in 50 years for the BI-MRF building is 1.3 times greater than that of the BI-SWF building for both no pounding and pounding cases. The probability of collapse increases when pounding is considered, which results in a smaller value of the collapse margin ratio compared to no pounding case for both the buildings. The financial losses resulting from damage to the BI-MRF and BI-SWF buildings under design earthquake (DE) and risk-targeted maximum considered earthquake (MCER) levels are calculated for the no pounding case, since there was no pounding under DE-level and very few instances of pounding under MCER-level. Calculation of financial losses due to damage to structural and nonstructural components, service equipment and downtime shows that the BI-SWF building results in larger repair costs and downtime cost compared to the BI-MRF building.


2011 ◽  
Vol 462-463 ◽  
pp. 241-246 ◽  
Author(s):  
Farzad Hejazi ◽  
Samira Jilani Kojouri ◽  
Jamal Noorzaei ◽  
M.S. Jaafar ◽  
W.A. Thanoon ◽  
...  

Conventional buildings are mainly designed based on elastic analysis of structures subjected to moderate earthquakes. In this case, the seismic forces are much smaller than the forces introduced by strong ground motions with the considered structural behavior going to nonlinear response during these severe earthquakes. Improving the earthquake resistance of reinforced concrete buildings using a variety of earthquake energy dissipation systems has received considerable attention in recent years by civil engineers. In the present study, a nonlinear computational scheme was developed to predict the complete nonlinear dynamic response of reinforced concrete framed buildings equipped with viscous damper device subjected to earthquake excitation. A finite element program code is developed based on the nonlinear analysis procedure of reinforced concrete buildings equipped with viscous damper devices and a two dimensional, five story models of RC buildings subjected to earthquake were analyzed. Result of nonlinear analysis of RC buildings which furnished by viscous dampers indicated that using of viscous dampers effectively reduced the damages occurring in the building and structural motion during severe earthquakes.


Sign in / Sign up

Export Citation Format

Share Document