scholarly journals The Impact of the Cosmological Constant on the Newtonian Gravity

Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis. However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.

Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis. However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.


Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis.  However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.


Author(s):  
Engel Roza

By solving the weak field limit of Einstein’s Field Equation including the Cosmological Constant, under the constraint of spherical isotropy, it is shown that, at large cosmological distance, the gravitational force exceeds the one that is predicted by Newton’s gravity law, such that it corresponds with Milgrom’s MOND hypothesis. However, the resulting prediction that, at extremely large distances, gravity with some spatial periodicity turns on-and-off into antigravity marks a decisive difference.


Author(s):  
C J Clarke

Abstract We examine the distribution of on-sky relative velocities for wide binaries previously assembled from GAIA DR2 data and focus on the origin of the high velocity tail of apparently unbound systems which may be interpreted as evidence for non-Newtonian gravity in the weak field limit. We argue that this tail is instead explicable in terms of a population of hidden triples, i.e. cases where one of the components of the wide binary is itself a close binary unresolved in the GAIA data. In this case the motion of the photocentre of the inner pair relative to its barycentre affects the apparent relative proper motion of the wide pair and can make pairs that are in fact bound appear to be unbound. We show that the general shape of the observed distributions can be reproduced using simple observationally motivated assumptions about the population of hidden triples.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 358
Author(s):  
Roberto Casadio ◽  
Andrea Giusti

Bootstrapped Newtonian gravity was developed with the purpose of estimating the impact of quantum physics in the nonlinear regime of the gravitational interaction, akin to corpuscular models of black holes and inflation. In this work, we set the ground for extending the bootstrapped Newtonian picture to cosmological spaces. We further discuss how such models of quantum cosmology can lead to a natural solution to the cosmological constant problem.


2004 ◽  
Vol 13 (02) ◽  
pp. 359-371 ◽  
Author(s):  
GIUSEPPE BASINI ◽  
MARCO RICCI ◽  
FULVIO BONGIORNO ◽  
SALVATORE CAPOZZIELLO

We investigate the weak-field limit of scalar-tensor theory of gravity and show that results are directly depending on the coupling and self-interaction potential of the scalar field. In particular, corrections are derived for the Newtonian potential. We discuss astrophysical applications of the results, in particular the flat rotation curves of spiral galaxies.


2017 ◽  
Vol 45 ◽  
pp. 1760046
Author(s):  
Lídice Cruz Rodríguez ◽  
Aurora Pérez Martínez ◽  
Gabriella Piccinelli ◽  
Elizabeth Rodríguez Querts

We study the Quantum Faraday rotation starting from the photon self-energy in the presence of a constant magnetic field. The Faraday angle is calculated in the non-degenerate regime and for weak field limit. Two physical scenarios, possibly characterized by these conditions, are the recombination epoch and the jets originated in pulsars. We discuss the resonant behavior that the Faraday angle exhibits in these scenarios and investigate the possibility of detecting cosmic magnetic fields through this resonant mechanism.


2010 ◽  
pp. 165-208
Author(s):  
Salvatore Capozziello ◽  
Valerio Faraoni

Sign in / Sign up

Export Citation Format

Share Document