resonant behavior
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 24)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Kenta Ohira

Abstract We propose here a delay differential equation that exhibits a new type of resonating oscillatory dynamics. The oscillatory transient dynamics appear and disappear as the delay is increased between zero to asymptotically large delay. The optimal height of the power spectrum of the dynamical trajectory is observed with the suitably tuned delay. This resonant behavior contrasts itself against the general behaviors where an increase of delay parameter leads to the persistence of oscillations or more complex dynamics.


2021 ◽  
Vol 42 (2) ◽  
pp. 227
Author(s):  
Arthur de Abreu Romão ◽  
Newton Da Silva

Distributed generation systems, based on renewable energy sources, are typically connected to the main grid by a voltage-source inverter with a low-pass filter. The need for improved efficiency led to the use of third order low-pass filters, such as the LCL configuration, which has resonant behavior. In order to meet energy quality requirements and ensure the systems stability it is necessary to suppress the LCL filters resonance through damping techniques. Therefore, this paper presents an overview of some damping strategies found in literature and its design procedure, applied to a simulated single-phase grid-tied inverter. The comparison of each presented damping methodology characteristics is described, with analysis of advantages and drawbacks for each case.


2021 ◽  
Author(s):  
KELVIN NICHOLSON ◽  
JOHN WANG ◽  
ROWAN HEALEY ◽  
TAYLOR LYNCH ◽  
JOEL PATNIOTIS ◽  
...  

Conformal Loadbearing Antenna Structures (CLAS) take advantage of a combination of structural and electromagnetic functions. CLAS have been developed as an advanced replacement for conventional antennas (such as blades, wires and dishes) to improve the structural efficiency, as well as the electromagnetic and aerodynamic performance of a platform. The CLAS concept permits the direct integration of microwave radiating elements in the structural skin of a platform. Therefore, the antenna will be subjected to structural loading and will deform accordingly. The effects of these structural-induced deformations on the resonant frequency of the antenna will be reported in this paper. This paper will investigate the performance of a carbon veil patch antenna when it is subject to static in-plane. The work presented will include the effects of in-plane loading on the resonant behavior of the patch antenna when the carbon veil is fully bonded and when it is disbonded by the parent structure. This paper will also discuss the effects of substrate delamination on the RF response of the patch antenna. The RF characteristics of the antenna will be modelled using ANSYS High Frequency Structure Simulator (HFSS).


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Seojoo Lee ◽  
Ji-Hun Kang

We theoretically investigate a metal-to-insulator transition in artificial two-dimensional (2D) crystals (i.e., metasurfaces) of tightly coupled closed-ring resonators. Strong interaction between unit resonators in the metasurfaces yields the effective permittivity highly dependent on the lattice spacing of unit resonators. Through our rigorous theory, we provide a closed form of effective permittivity of the metasurface and reveal that the permittivity possesses a Lorentzian-type resonant behavior, implying that the transition of the effective permittivity can arise when the lattice spacing passes a critical value.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1860
Author(s):  
Octavian Danila

We report theoretical investigations performed in the terahertz G-band, in the 228–232 GHz spectral window for a piezoelectrically-responsive ring-cone element metasurface composed of polyvinylidene fluoride (PVDF)/Silicon and PVDF/Silica glass. The choosing of this spectral window is motivated by a multitude of applications in terahertz detection and terahertz imaging, that commonly make use of this band. The uniqueness of the envisioned architecture resides in the combination between the readily-available polyvinylidene fluoride polymer and silicon/silica glass substrates, together with the introduction of an extra degree of freedom, in the form of a ring-cone architecture , and the active control of the geometric sizes through the longitudinal piezoelectric effect exhibited by the polymer. The spectral response of the metasurface is dependent on the combination between the polymer elements and the substrate, and ranges from near-zero absorption switching to a resonant behavior and significant absorption. The interaction between the electromagnetic field and the polymer-based metasurface also modifies the phase of the reflected and transmitted waves over a full 2π range, permitting complete control of the electric field polarization. Moreover, we take advantage of the longitudinal piezoelectric effect of PVDF and analyze the spectrum shaping capability of the polymer-based metasurface. Our analysis highlights the capability of the proposed architecture to achieve complete electric field polarization control, near-zero optical switching and resonant behavior, depending on the geometries and sizes of the architecture elements resulting from construction considerations and from the externally applied voltages through the piezoelectric effect.


2021 ◽  
Vol 75 (6) ◽  
Author(s):  
Kazunori Shibata

Abstract Nonlinear corrections on electromagnetic fields in vacuum have been expected. In this study, we have theoretically considered nonlinear Maxwell’s equations in a one-dimensional cavity for a classical light and external static electromagnetic fields. A general solution for the electromagnetic corrective components including that of a longitudinal standing wave was derived after a linearization. The main purpose is to give a detailed feature of the previously reported resonant behavior [Shibata, Euro. Phys. J. D 74:215 (2020)], such as the effect of external static fields and the polarization fluctuation. These results favor the development of new and effective method for experiment. Graphic abstract


2021 ◽  
Vol 7 ◽  
Author(s):  
Deborah Briccola ◽  
Anna Pandolfi

The mitigation properties of metaconcrete cast with two types of resonant inclusions are assessed through wave transmission tests. Three cylindric metaconcrete specimens of regular size (20 cm height, 10 cm diameter), containing an equal number of different type of inclusions disposed in a semi-regular lattice, are tested in the longitudinal direction within the sonic range of frequencies. Inclusions, bi-material spheres consisting of a heavy core coated with a soft material, are characterized by a resonant behavior, evaluated numerically with a finite element modal analysis of a unit metaconcrete cell. Each metaconcrete specimen contains six layers consisting of six engineered aggregates of different type. Inclusions are disposed by rotating each layer with respect to the adjacent ones, as so as to create a pseudo-random arrangement. Specimens are excited by a sinusoidal signal of linearly growing frequency, sweeping a range centered at the translational eigenfrequency of the resonant inclusion. A standard plain concrete specimen is used as reference to define a transmissibility coefficient, that facilitates the quantification of the attenuation properties. With respect to plain concrete, all metaconcrete specimens show a marked (up to 80–90%) attenuation of the transmitted signal in proximity of the numerically estimated eigenfrequency of the inclusion. The intensity of the attenuation is weakly dependent on the type of the inclusion, while the frequency where the attenuation is observed depends markedly on the inclusion type. As a very positive quality in the view of practical applications, experimental results confirm that the attenuation effectiveness of metaconcrete is not related to the ordered microstructural arrangement.


2020 ◽  
Vol 15 (12) ◽  
Author(s):  
Marcela R. Machado ◽  
Adriano T. Fabro ◽  
Braion B. de Moura

Abstract The accurate prediction of the dynamic characteristics of a structure is key to successful vibration control strategies. A typical vibration and wave propagation control is performed through periodic and shunted piezoelectric patches, also known as a smart material. Therefore, the smart metamaterial considers periodic arrangement of shunted piezoelectric patches providing a beam with attenuation properties which depend on the resonant behavior of the shunts. The vibration attenuation occurs due to an elastic-electrical system characterized by an internal resonance of the shunt circuit. The spectral element approach provides very accurate solutions for the structural dynamic response. In this paper, a beam-piezoelectric structure is introduced to focus on the control of flexural waves in beams with piezolayers connected to single and multiresonant shunt approaches. The smart structure is modeled using the spectral element method. It is shown that the effective wavenumber presents the locally resonant behavior at the same frequencies of the vibration attenuation for both single and multishunt approached, indicating that each shunt circuit is independently associated with a attenuation frequency. The spectral element approach presented in this paper shows to be an accurate and simple approach for the design smart metamaterial beams.


2020 ◽  
Vol 35 (29) ◽  
pp. 2050184
Author(s):  
David Berenstein ◽  
Alexandra Miller

We study various corrections of correlation functions to leading order in conformal perturbation theory, both on the cylinder and on the plane. Many problems on the cylinder are mathematically equivalent to those in the plane if we give the perturbations a position dependent scaling profile. The integrals to be done are then similar to those in the study of correlation functions with one additional insertion at the center of the profile. We will be primarily interested in the divergence structure of these corrections when computed in dimensional regularization. In particular, we show that the logarithmic divergences (enhancements) that show up in the plane under these circumstances can be understood in terms of resonant behavior in time dependent perturbation theory, for a transition between states that is induced by an oscillatory perturbation on the cylinder.


Sign in / Sign up

Export Citation Format

Share Document