scholarly journals Hyperbolic Tangent Ansatz Method to Space Time Fractional Modified KdV, Modified EW and Benney–Luke Equations

Author(s):  
Ozlem Ersoy Hepson

The space time fractional Korteweg-de Vries equation, modified Equal Width equation and Benney-Luke Equations are solved by using simple hyperbolic tangent Ansatz method. A simple compatible wave transformation in one dimension is employed to reduce the governing equations to integer ordered ODEs. Then, the ansatz approximation is used to derive exact solutions. Some illustrative examples are presented for some particular choices of parameters and derivative orders.

2018 ◽  
Vol 32 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jiangen Liu ◽  
Yufeng Zhang

This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg–de Vries equation with space–time local fractional derivatives. By using the improved [Formula: see text]-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.


2019 ◽  
Vol 8 (1) ◽  
pp. 157-163 ◽  
Author(s):  
K. Hosseini ◽  
A. Bekir ◽  
F. Rabiei

AbstractThe current work deals with the fractional forms of EW and modified EW equations in the conformable sense and their exact solutions. In this respect, by utilizing a traveling wave transformation, the governing space-time fractional models are converted to the nonlinear ordinary differential equations (NLODEs); and then, the resulting NLODEs are solved through an effective method called the exp(−ϕ(ϵ))-expansion method. As a consequence, a number of exact solutions to the fractional forms of EW and modified EW equations are generated.


Sign in / Sign up

Export Citation Format

Share Document