scholarly journals Failure Characteristics Induced by Unloading Disturbance and Corresponding Mechanical Mechanism of the Coal Seam Floor in Deep Mining

Author(s):  
Li Jiazhuo ◽  
Xie Guangxiang ◽  
Wang Lei

Failure characteristics induced by unloading disturbance and the corresponding mechanical mechanism of the coal seam floor are important theoretical bases for water-bursting prevention from the floor of the coal seam and rock burst alarm in deep mining. However, the existing two-dimensional ground-pressure-control theory based on shallow mining cannot sufficiently guide deep-mining practices. In this study, the redistribution of mining-induced stress field in rocks surrounding the longwall face and mechanical behaviors of strata in deep mining are investigated through a combination of numerical simulation, physical simulation, and field measurement. Results demonstrate that mining-induced stress fields in the floor of the longwall face differ in space and time. Vertical stress unloading from top to bottom of the floor and horizontal stress unloading are relatively low. A concentration zone of high horizontal stress exists at stope boundaries. The critical yield load of rock stratum in the floor is determined through thin plate yield theory. Under the combined effect of concentrated high horizontal and vertical resilience stresses, strata in the floor fracture from seam to seam if the load increases to the minimum critical buckling value. Fractured strata slide along the fracture surface, which leads to floor heave. The stope floor shows evident time-delay progressive failure characteristics. The stress shell in the stope floor in deep mining is found to be a sensitive mechanical parameter that produces three-dimensional ground-pressure behavior in the floor. This ground-pressure behavior in the stope floor is controlled by the existence of the corresponding stress shell and effects induced by its space–time evolution. This study provides theoretical basis for the dynamic control of a hazard-inducing environment in engineering and minimizing or altering disaster-occurrence conditions during the construction engineering of the coal seam floor.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Rui Gao ◽  
Jingxuan Yang ◽  
Tiejun Kuang ◽  
Hongjie Liu

The fracturing of hard roofs in different layers would result in complex ground pressure on the working face, such as supports collapsed and severe roadway deformation. However, the mechanism of the ground pressure induced by hard roof fracturing in different layers is still unclear. In the paper, a physical model of a 20 m extrathick coal seam mined with hard roofs existing was established based on the physical simulation similarity criterion. The overburden fracturing structure, abutment stress distribution, and failure characteristics of the coal body were monitored by a noncontact strain measurement system and resistance strain gauges, to reveal the mechanism of ground pressure induced by hard roof fracturing. Furthermore, on-site measurement was used to monitor and analyze the ground pressure affected by hard roofs in different levels. The results provide a theoretical basis for the control of ground pressure in extrathick coal seam mining with hard roofs.


2011 ◽  
Vol 255-260 ◽  
pp. 3780-3785 ◽  
Author(s):  
Lei Yu ◽  
Zhi Zhong Fan ◽  
Gang Xu

The mine pressure behavior characters of shallow buried coal seam differed from both shallow seam mining and general depth seam. Mine pressure observation and numerical analysis were applied to research mine pressure behavior laws in fully mechanized face of shallow buried coal seam with thick bedrock and thin alluvium. It showed that the ground subsidence level phenomenon did not appear obviously although with obvious dynamic loading of fully mechanized face during the pressure period. The appearance was due to non-synchronized fracture from two key layers in the overlying rock layers and their interaction, which leaded to roof breaking initially and caving rocks with the form of an arch. Due to the periodic breaking and caving characteristics appearing as fully cut-down and arch alternately, the periodic pressure of shallow buried coal seam face showed as different size. The conclusion could be a reference for similar working face control.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingxiang Huang ◽  
Jinlong Zhou ◽  
Jian Cao

The fully mechanized mining with large mining height is the main method for high yield and efficient coal mining in China. The key stratum structure (KSS) is the basis of revealing the mechanism of roof weighting and determination of support working resistance of the longwall face with large mining height (LFLMH) in the shallow coal seam. The height of the caving zone at LFLMH is large, the thick immediate roof forms the “short cantilever beam” structure commonly, and the hinge layer of the overlying key stratum will move upward to the higher position. The “high position oblique step voussoir beam” structure of single-key stratum (SKS) and “oblique step voussoir beam and voussoir beam” structure of double-key stratum (DKS) in the shallow coal seam were proposed with physical simulation and Universal Distinct Element Code (UDEC). The analysis of the KSS and numerical simulation reveals the mechanism of strong roof weighting at the SKS longwall face and large-small alternate periodic weighting at the DKS longwall. It is concluded that the large static load caused by the “equivalent immediate roof (EIR)” is the basic load, and the instability load of the KSS is the additional dynamic load of support. Besides, the calculation methods of the reasonable support working resistance at LFLMH were obtained and verified with engineering applications.


2021 ◽  
Vol 14 (12) ◽  
Author(s):  
Jiazhuo Li ◽  
Penghui Guo ◽  
Anying Yuan ◽  
Chuanqi Zhu ◽  
Tong Zhang ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
pp. 163-176
Author(s):  
Penghua Han ◽  
Cun Zhang ◽  
Zhaopeng Ren ◽  
Xiang He ◽  
Sheng Jia

Abstract The advance speed of a longwall face is an essential factor affecting the mining pressure and overburden movement, and an effective approach for choosing a reasonable advance speed to realise coal mine safety and efficient production is needed. To clarify the influence of advance speed on the overburden movement law of a fully mechanised longwall face, a time-space subsidence model of overburden movement is established by the continuous medium analysis method. The movement law of overburden in terms of the advance speed is obtained, and mining stress characteristics at different advance speeds are reasonably explained. The theoretical results of this model are further verified by a physical simulation experiment. The results support the following conclusions. (i) With increasing advance speed of the longwall face, the first (periodic) rupture interval of the main roof and the key stratum increase, while the subsidence of the roof, the fracture angle and the rotation angle of the roof decrease. (ii) With increasing advance speed, the roof displacement range decreases gradually, and the influence range of the advance speed on the roof subsidence is 75 m behind the longwall face. (iii) An increase in the advance speed of the longwall face from 4.89 to 15.23 m/d (daily advancing of the longwall face) results in a 3.28% increase in the impact load caused by the sliding instability of the fractured rock of the main roof and a 5.79% decrease in the additional load caused by the rotation of the main roof, ultimately resulting in a 9.63% increase in the average dynamic load coefficient of the support. The roof subsidence model based on advance speed is proposed to provide theoretical support for rational mining design and mining-pressure-control early warning for a fully mechanised longwall face.


Author(s):  
Rui Gao ◽  
Tiejun Kuang ◽  
Yanqun Zhang ◽  
Wenyang Zhang ◽  
Chunyang Quan

AbstractWhen mining extra-thick coal seams, the main cause of strong ground pressure are the high-level thick and hard strata, but as yet there is no active and effective control technology. This paper proposes the method of subjecting hard roofs to ground fracturing, and physical simulation is used to study the control effect of ground fracturing on the strata structure and energy release. The results show that ground fracturing changes the structural characteristics of the strata and reduces the energy release intensity and the spatial extent of overburden movement, thereby exerting significant control on the ground pressure. The Datong mining area in China is selected as the engineering background. An engineering test was conducted on site by ground horizontal well fracturing, and a 20-m-thick hard rock layer located 110 m vertically above the coal seam was targeted as the fracturing layer. On-site microseismic monitoring shows that the crack propagation length is up to 216 m and the height is up to 50 m. On-site mine pressure monitoring shows that (1) the roadway deformation is reduced to 100 mm, (2) the periodic weighting characteristics of the hydraulic supports are not obvious, and (3) the ground pressure in the working face is controlled significantly, thereby showing that the ground fracturing is successful. Ground fracturing changed the breaking characteristics of the high-level hard strata, thereby helping to ameliorate the stress concentration in the stope and providing an effective control approach for hard rock.


Sign in / Sign up

Export Citation Format

Share Document