longwall face
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 66)

H-INDEX

14
(FIVE YEARS 5)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1438
Author(s):  
Anye Cao ◽  
Yaoqi Liu ◽  
Siqi Jiang ◽  
Qi Hao ◽  
Yujie Peng ◽  
...  

With the increase in coal mining depth, engineering geological conditions and the stress environment become more complex. Many rock bursts triggered by two combined faults have been observed in China, but the mechanism is not understood clearly. The focus of this research aims at investigating the influence of two combined faults on rock burst mechanisms. The six types of two combined faults were first introduced, and two cases were utilized to show the effects of two combined faults types on coal mining. The mechanical response of the numerical model with or without combined faults was compared, and a conceptual model was set up to explain the rock burst mechanism triggered by two combined faults. The influence of fault throw, dip, fault pillar width, and mining height on rock burst potential was analyzed. The main control factors of rock burst in six models that combined two faults were identified by an orthogonal experiment. Results show that six combinations of two faults can be identified, including stair-stepping fault, imbricate fault, graben fault, horst fault, back thrust fault, and ramp fault. The particular roof structure near the two combined faults mining preventing longwall face lateral abutment pressure from transferring to deep rock mass leads to stress concentration near the fault areas. Otherwise, a special roof structure causing the lower system stiffness of mining gives rise to the easier gathering of elastic energy in the coal pillars, which makes it easier to trigger a rock burst. There is a nonlinear relationship between fault parameters and static or dynamic load for graben faults mining. The longwall face has the highest rock burst risk when the fault throw is between 6 and 8 m, the fault dip is larger than 65°, the mining height is greater than 6 m, and the coal pillar width is less than 50 m. The stair-stepping, imbricate, horst, and ramp fault compared to the other fault types will produce higher dynamic load stress during longwall retreat. Fault pillar width is the most significant factor for different two combined faults, leading to the rise of static load stress and dynamic proneness.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Trung Tien VU ◽  
Tien Dung LE ◽  
Tien Dung LE ◽  
Thai Tien Dung VU

Support plans and operation schemes of mine faces are critical technical documents inunderground coal mining management. The development and selection of a reasonable support plan andoperation scheme of the face are complicated because they involve many factors. In specific miningconditions, developing and selecting an appropriate support plan and operation scheme will improve theworking efficiency of equipment, increase labor productivity, and ensure workers' safety. This articleresearched a mining technology for the thin seams, focusing on coal seam 10T in Nam Khe Tam coalmine, 86 Coal Company. From the analysis of geo-mining conditions, the article developed and selecteda reasonable support plan and operation scheme for the face in coal seam 10T. After being used in thefield, the support plan and operation scheme have brought the face efficiency and safety.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Manh Tung BUI ◽  
Tien Dung LE ◽  
Trong Hung VO

Quang Ninh underground coal mines are currently in the phase of finishing up the mineralreserves located near the surface. Also, in this phase, a number of coal mines have opened and preparednew mine sites for the extraction of the reserves at greater depth. Several mines have mined at -350 mdepth and are driving opening excavations at -500 m depth below sea level. The mining at greater depthfaces many difficulties, such as a significant increase in support and excavation pressures. The longwallface pressure is mostly manifested in great magnitude that causes support overloaded and jumped andface spall/roof fall. This paper, based on the geological condition of the Seam 11 Ha Lam coal mine,uses the numerical program UDEC for studying the impact of mining depth on stress distribution aroundthe longwall face. The results show that the deeper the mining is, the greater the plastic deformationzone is. The peak front abutment stress moves closer to the coal wall, mainly concentrating on theimmediate roof and top coal. The top coal is greatly broken, and its bearing capacity is decreased. Somesolutions to the stability of roof strata are proposed, and a proper working resistance of support isdetermined. Additionally, the paper suggests that the starting depth for deep mining in Quang Ninhunderground coal mines should be -350 m below sea level.


2021 ◽  
Vol 249 ◽  
pp. 342-350
Author(s):  
Аndrey Meshkov ◽  
Oleg Kazanin ◽  
Andrey Sidorenko

The reasons for the lag of the indicators of the leading Russian coal mines engaged in the longwall mining of the flat-lying coal seams from similar foreign mines are considered. The analysis of the efficiency of the longwall face move operations at the JSC SUEK-Kuzbass mines was carried out. A significant excess of the planned deadlines for the longwall face move during the thick flat-lying seams mining, the reasons for the low efficiency of disassembling operations and the main directions for improving the technology of disassembling operations are revealed. The directions of ensuring the operational condition of the recovery room formed by the longwall face are considered. The recommended scheme of converged coal seams mining and a three-dimensional model of a rock mass to justify its parameters are presented. Numerical studies using the finite element method are performed. The results of modeling the stress-strain state of a rock mass in the vicinity of a recovery room formed under conditions of increased stresses from the boundary part of a previously mined overlying seam are shown. The main factors determining the possibility of ensuring the operational condition of the recovery rooms are established. It is shown that it is necessary to take into account the influence of the increased stresses zone when choosing timbering standards and organizing disassembling operations at a interbed thickness of 60 m or less. A sufficient distance from the gob of above- or undermined seams was determined to ensure the operational condition of the recovery room of 50 m, for the set-up room – 30 m. Recommendations are given for improving technology and organization of the longwall face move operations at the mines applied longwall mining of flat-lying coal seams with the formation of a recovery room by the longwall face.


2021 ◽  
Vol 4 (1) ◽  
pp. 23-39
Author(s):  
Henryk Badura ◽  
Zygmunt Łukaszczyk

Abstract In hard coal mines with methane, there is often a need to apply demethylation in order to keep the methane concentration not exceeding 2% in the ventilation air. The basic demethylation method in longwall areas is through drainage boreholes made in the roof rocks of the coal bed, from top gate, in front of the longwall. The drainage boreholes are usually made in bundles, in a fan-shaped arrangement, with several boreholes in each bundle. The paper presents the results of measurements and tests of the efficiency of a bundle of four drainage boreholes drilled approximately 100 m in front of the longwall face. The efficiency of individual boreholes was analyzed in time and depending on the distance of borehole outlets from the longwall face. It was found that there is a large variation in the extraction of air-methane mixture by individual drainage boreholes, as well as large differences in the efficiency of individual drainage boreholes during the longwall extraction process.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5221
Author(s):  
Dan Yu ◽  
Xiaoyong Yi ◽  
Zhimeng Liang ◽  
Jinfu Lou ◽  
Weibing Zhu

Numerous room-and-pillar mining goaf are apparent in western China due to increasing small coal mining activities, which causes the collapse of the overlying coal pillars and the occurrence of strong ground pressure on the longwall face and surface subsidence. In this study, Yuanbao Bay Coal Mine, Shuozhou, Shanxi, was selected to study the collapse of the overlying coal pillars on the longwall face and reveal the mechanism of the pillar collapse and the disaster-causing mechanism caused by strong ground pressure. Results show that the dynamic collapse process of coal pillars is relatively complicated. First, the coal pillars on both sides of the goaf are destroyed and destabilized, followed by the adjacent coal pillars, which eventually cause a large-scale collapse of the coal pillars. This results in a large-scale cut-off movement of the overlying strata, and the large impact load that acts on the longwall face causes an unmovable longwall face support. Moreover, the roof weighting is severe when strong ground pressure occurs on the longwall face, causing local support jammed accidents. Furthermore, the data of each measurement point of the strata movement inside the ground borehole significantly increases, and the position of the borescope peeping error holes in the ground drill hole rise steeply. The range of movement of the overlying strata increases instantaneously, and the entire strata begin to move. Research on the mechanism of strong ground pressure can effectively prevent mine safety accidents and avoid huge economic losses.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haijun Wang ◽  
Yingjie Liu ◽  
Yuesong Tang ◽  
Hao Gong ◽  
Guoliang Xu

The capabilities of mining equipment and technology in China have been improving rapidly in recent years. Correspondingly, in the western part of the country, the mining heights of longwall faces in shallow-buried coal seams have shown an increasing trend, resulting in enhanced mining efficiency. However, the problems associated with the possible failure of the coal wall then increase and remain a serious difficulty, restricting safe and efficient mining operations. In the present study, the 12401 longwall face of the Shangwan Coal Mine, Inner Mongolia, China, with a mining height of 8.8 m, is taken as an example to study the mechanisms underlying failure phenomena of coal walls and their control methods. Our results show that the failure region inward of the longwall face is small in shallow-buried coal seams, and the damage degree of the exposed coal wall is low. The medium and higher sections of the coal wall display a dynamic failure mode, while the broken coal blocks, given their initial speed, threaten the safety of coal miners. A mechanical model was developed, from which the conditions for tensile failure and structural instability are deduced. Horizontal displacement in the lower part of the coal wall is small, where no tensile stress emerges. On the other hand, in the intermediate and higher parts of the coal wall, horizontal displacement is relatively large. In addition, tensile stress increases first with increasing distance from the floor and then decreases to zero. Experiments using physical models representing different mining heights have been carried out and showed that the horizontal displacement increases from 6 to 12 mm and load-bearing capacity decreases from 20 to 7.9 kN when the coal wall increases in height from 3 to 9 m. Furthermore, failure depth and failure height show an increasing trend. It is therefore proposed that a large initial support force, large maximum support force, large support stiffness, and large support height of a coal wall-protecting guard are required for the improved stability of high coal walls, which operate well in the Shangwan coal mine.


2021 ◽  
Author(s):  
G Budi ◽  
Kolikipogu Nageswara Rao ◽  
Punit Mohanty

Abstract Understanding the behaviour of underground workings is essential for the success of any mining method. The longwall mining method is one of the predominant underground methods to extract coal. Since 1978, in India, 22 underground coal mines of different collieries have been implemented the mechanized longwall method. SCCL is one of that colliery has mixed working experiences with longwall method in their mines. The longwall faces in GDK-10A, JK-5, and VK-7 of SCCL had produced good results, but the faces in GDK-7, GDK-9, GDK-11A, and PVK-5 had suffered due to the geological disturbances and unavailability of real-time information about the strata behaviour. By addressing the previous experiences of longwall workings, Singareni Collieries Company Limited (SCCL) has implemented a high capacity (1 × 1152T) powered support system in Adriyala Longwall Project (ALP) at a depth of 375m. In this study, extensive field monitoring with different strata monitoring instruments was conducted in ALP to analyze the gate roads convergence, stress variation on longwall and chain pillars at different stages of extraction (i.e., 8m, 25m, 35m, and 45m) and the pressure variation on the powered support systems. It was observed from the results that the convergence in the gate roads was increasing with the advance of the longwall face and the area of exposure. The pressure of the legs on the dip side was less than the pressure of the legs on the rise side, which implies a stable roof condition over the longwall face. To better understand the behaviour of ALP workings, a numerical modelling study with FLAC 7.0 has been conducted with actual physio-mechanical properties. The computed numerical modelling results have been remarkably well in consistent with the field monitoring results. The stability of chain pillars has been estimated at every stage of extraction by the Factor of Safety (FoS) criterion and it was found that the pillars could be ensured stability in longwall workings.


2021 ◽  
Vol 14 (12) ◽  
Author(s):  
Gaofeng Song ◽  
Yonghua Han ◽  
Lianghui Li ◽  
Yi Yang

Sign in / Sign up

Export Citation Format

Share Document