scholarly journals MAGIC: a MATLAB Toolbox for External Control of Transcranial Magnetic Stimulation Devices

Author(s):  
Forough Habibollahi Saatlou ◽  
Nigel C. Rogasch ◽  
Nicolas A. McNair ◽  
Mana Biabani ◽  
Steven D. Pillen ◽  
...  

The capacity to externally control transcranial magnetic stimulation (TMS) devices is becoming increasingly important in brain stimulation research. Here we introduce MAGIC (MAGnetic stimulator Interface Controller), an open-source MATLAB toolbox for controlling Magstim and MagVenture stimulators. MAGIC includes a series of MATLAB functions which allow the user to arm/disarm the stimulator, send triggers, change stimulator settings such as amplitude, interpulse intervals, and frequency, and receive stimulator setting information via a serial port connection between a computer and the stimulator. By providing external control capability, MAGIC enables greater flexibility in designing research protocols which require trial-by-trial changes of device settings to realize a priori trial randomization or interactive ad hoc adjustment of parameters during an ongoing experiment. MAGIC thus helps to prevent experimental confounds related to the block-wise variation of parameters and facilitates the integration of TMS with cognitive/sensory tasks, and the development of more adaptive brain state-dependent brain stimulation protocols.

2018 ◽  
Vol 11 (5) ◽  
pp. 1189-1191 ◽  
Author(s):  
Forough Habibollahi Saatlou ◽  
Nigel C. Rogasch ◽  
Nicolas A. McNair ◽  
Mana Biabani ◽  
Steven D. Pillen ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Shanice E. W. Janssens ◽  
Alexander T. Sack

Transcranial magnetic stimulation (TMS) can cause measurable effects on neural activity and behavioral performance in healthy volunteers. In addition, TMS is increasingly used in clinical practice for treating various neuropsychiatric disorders. Unfortunately, TMS-induced effects show large intra- and inter-subject variability, hindering its reliability, and efficacy. One possible source of this variability may be the spontaneous fluctuations of neuronal oscillations. We present recent studies using multimodal TMS including TMS-EMG (electromyography), TMS-tACS (transcranial alternating current stimulation), and concurrent TMS-EEG-fMRI (electroencephalography, functional magnetic resonance imaging), to evaluate how individual oscillatory brain state affects TMS signal propagation within targeted networks. We demonstrate how the spontaneous oscillatory state at the time of TMS influences both immediate and longer-lasting TMS effects. These findings indicate that at least part of the variability in TMS efficacy may be attributable to the current practice of ignoring (spontaneous) oscillatory fluctuations during TMS. Ignoring this state-dependent spread of activity may cause great individual variability which so far is poorly understood and has proven impossible to control. We therefore also compare two technical solutions to directly account for oscillatory state during TMS, namely, to use (a) tACS to externally control these oscillatory states and then apply TMS at the optimal (controlled) brain state, or (b) oscillatory state-triggered TMS (closed-loop TMS). The described multimodal TMS approaches are paramount for establishing more robust TMS effects, and to allow enhanced control over the individual outcome of TMS interventions aimed at modulating information flow in the brain to achieve desirable changes in cognition, mood, and behavior.


2021 ◽  
Vol 286 ◽  
pp. 78-79
Author(s):  
Sara Borgomaneri ◽  
Simone Battaglia ◽  
Alessio Avenanti ◽  
Giuseppe di Pellegrino

2019 ◽  
Author(s):  
Jarno Tuominen ◽  
Sakari Kallio ◽  
Valtteri Kaasinen ◽  
Henry Railo

Can the brain be shifted into a different state using a simple social cue, as tests on highly hypnotisable subjects would suggest? Demonstrating an altered brain state is difficult. Brain activation varies greatly during wakefulness and can be voluntarily influenced. We measured the complexity of electrophysiological response to transcranial magnetic stimulation (TMS) in one “hypnotic virtuoso”. Such a measure produces a response outside the subject’s voluntary control and has been proven adequate for discriminating conscious from unconscious brain states. We show that a single-word hypnotic induction robustly shifted global neural connectivity into a state where activity remained sustained but failed to ignite strong, coherent activity in frontoparietal cortices. Changes in perturbational complexity indicate a similar move toward a more segregated state. We interpret these findings to suggest a shift in the underlying state of the brain, likely moderating subsequent hypnotic responding. [preprint updated 20/02/2020]


Sign in / Sign up

Export Citation Format

Share Document