scholarly journals Deep Ancestry of Orthologs and a Theoretical, Gradualist Perspective for the Formation of the LUCA’s (Last Universal Common Ancestor) Genome

Author(s):  
Francisco Prosdocimi ◽  
Sávio Torres de Farias

Genes and gene trees have been extensively used to study the evolutionary relationships among populations, species, families and higher systematic clades of organisms. This brought modern Biology into a sophisticated level of understanding about the evolutionary relationships and diversification patterns that happened along the entire history of organismal evolution in Earth. Genes however have not been placed in the center of questions when one aims to unravel the evolutionary history of genes themselves. Thus, we still ignore whether Insulin share a more recent common ancestor to Hexokinase or DNA polymerase. This brought modern Genetics into a very poor level of understanding about sister group relationships that happened along the entire evolutionary history of genes. Many conceptual challenges must be overcome to allow this broader comprehension about gene evolution. Here we aim to clear the intellectual path in order to provide a fertile research program that will help geneticists to understand the deep ancestry and sister group relationships among different gene families (or orthologs). We aim to propose methods to study gene formation starting from the establishment of the genetic code in pre-cellular organisms like the FUCA (First Universal Common Ancestor) until the formation of the highly complex genome of LUCA (Last UCA), that harbors hundreds of genes families working coordinated into a cellular organism. The deep understanding of ancestral relationships among orthologs will certainly inspire biotechnological and biomedical approaches and allow a deep understanding about how Darwinian molecular evolution operates inside cells and before the appearance of cellular organisms.

2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


Botany ◽  
2013 ◽  
Vol 91 (9) ◽  
pp. 605-613 ◽  
Author(s):  
Claudia Ciotir ◽  
Chris Yesson ◽  
Joanna Freeland

Understanding the spatial distribution of genetic diversity and its evolutionary history is an essential part of developing effective biodiversity management plans. This may be particularly true when considering the value of peripheral or disjunct populations. Although conservation decisions are often made with reference to geopolitical boundaries, many policy-makers also consider global distributions, and therefore a species’ global status may temper its regional status. Many disjunct populations can be found in the Great Lakes region of North America, including those of Bartonia paniculata subsp. paniculata, a species that has been designated as threatened in Canada but globally secure. We compared chloroplast sequences between disjunct (Canada) and core (USA) populations of B. paniculata subsp. paniculata separated by 600 km, which is the minimum distance between disjunct and core populations in this subspecies. We found that although lineages within the disjunct populations shared a relatively recent common ancestor, the genetic divergence between plants from Ontario and New Jersey was substantially greater than expected for a consubspecific comparison. A coalescence-based analysis dated the most recent common ancestor of the Canadian and US populations at approximately 534 000 years ago with the lower confidence estimate at 226 000 years ago. This substantially predates the Last Glacial Maximum and suggests that disjunct and core populations have followed independent evolutionary trajectories throughout multiple glacial–interglacial cycles. Our findings provide important insight into the diverse processes that have resulted in numerous disjunct species in the Great Lakes region and highlight a need for additional work on Canadian B. paniculata subsp. paniculata taxonomy prior to a reevaluation of its conservation value.


2021 ◽  
Vol 83 (2) ◽  
pp. 76-79
Author(s):  
Cristina Sousa

The origin of life is one of the most interesting and challenging questions in biology. This article discusses relevant contemporary theories and hypotheses about the origin of life, recent scientific evidence supporting them, and the main contributions of several scientists of different nationalities and specialties in different disciplines. Also discussed are several ideas about the characteristics of the most recent common ancestor, also called the “last universal common ancestor” (or LUCA), including cellular status (unicellular or community) and homogeneity level.


IAWA Journal ◽  
2011 ◽  
Vol 32 (4) ◽  
pp. 493-519 ◽  
Author(s):  
Anaïs Boura ◽  
Timothée Le Péchon ◽  
Romain Thomas

The Dombeyoideae (Malvaceae) are one of the most diversified groups of plants in the Mascarene Islands. Species of Dombeya Cav., Ruizia Cav. and Trochetia DC. are distributed in almost all parts of the archipelago and show a wide diversity in their growth forms. This study provides the first wood anatomical descriptions of 17 out of the 22 Mascarene species of Dombeyoideae. Their wood anatomy is similar to that of previously described species: wide vessels, presence of both apotracheal and paratracheal parenchyma, and storied structure. In addition, we also found a second wood anatomical pattern with narrower vessels, high vessel frequency and thick-walled fibres. The two aforementioned wood patterns are considered in a phylogenetic context and used to trace the evolutionary history of several wood anatomical features. For example, the pseudoscalariform pit arrangement supports a sister group relationship between Trochetia granulata Cordem. and T. blackburniana Bojer ex Baker and may be a new synapomorphy of the genus Trochetia. Finally, wood variability is evaluated in relation to geographic, climatic and biological data. Despite the juvenile nature of some of the specimens studied, we discuss how the habit, but also factors related to humidity, influence the variability observed in the Mascarene Dombeyoideae wood structure.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ricardo Micolino ◽  
Maykon Passos Cristiano ◽  
Natália Martins Travenzoli ◽  
Denilce Meneses Lopes ◽  
Danon Clemes Cardoso

AbstractFungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populations from coastal environments to trace the evolutionary history of the clade in light of chromosomal changes under a historical and geographic context. Our cytogenetic analyses revealed chromosomal differences within and among species. M. morschi exhibited three distinct karyotypes and considerable variability in the localization of 45S rDNA clusters. The molecular phylogeny was congruent with our cytogenetic findings. Biogeographical and divergence time dating analyses estimated that the most recent common ancestor of Mycetophylax would have originated at about 30 Ma in an area including the Amazon and Southern Grasslands, and several dispersion and vicariance events may have occurred before the colonization of the Brazilian Atlantic coast. Diversification of the psammophilous Mycetophylax first took place in the Middle Miocene (ca. 18–10 Ma) in the South Atlantic coast, while “M. morschi” lineages diversified during the Pliocene-Pleistocene transition (ca. 3–2 Ma) through founder-event dispersal for the Northern coastal regions. Psammophilous Mycetophylax diversification fits into the major global climatic events that have had a direct impact on the changes in sea level as well as deep ecological impact throughout South America. We assume therefore that putative chromosomal rearrangements correlated with increased ecological stress during the past climatic transitions could have intensified and/or accompanied the divergence of the psammophilous Mycetophylax. We further reiterate that “M. morschi” comprises a complex of at least three well-defined lineages, and we emphasize the role of this integrative approach for the identification and delimitation of evolutionary lineages.


1998 ◽  
Vol 95 (16) ◽  
pp. 9402-9406 ◽  
Author(s):  
Bruce G. Baldwin ◽  
Michael J. Sanderson

Comparisons between insular and continental radiations have been hindered by a lack of reliable estimates of absolute diversification rates in island lineages. We took advantage of rate-constant rDNA sequence evolution and an “external” calibration using paleoclimatic and fossil data to determine the maximum age and minimum diversification rate of the Hawaiian silversword alliance (Compositae), a textbook example of insular adaptive radiation in plants. Our maximum-age estimate of 5.2 ± 0.8 million years ago for the most recent common ancestor of the silversword alliance is much younger than ages calculated by other means for the Hawaiian drosophilids, lobelioids, and honeycreepers and falls approximately within the history of the modern high islands (≤5.1 ± 0.2 million years ago). By using a statistically efficient estimator that reduces error variance by incorporating clock-based estimates of divergence times, a minimum diversification rate for the silversword alliance was estimated to be 0.56 ± 0.17 species per million years. This exceeds average rates of more ancient continental radiations and is comparable to peak rates in taxa with sufficiently rich fossil records that changes in diversification rate can be reconstructed.


2019 ◽  
Vol 11 (9) ◽  
pp. 2531-2541 ◽  
Author(s):  
Valeria Mateo-Estrada ◽  
Lucía Graña-Miraglia ◽  
Gamaliel López-Leal ◽  
Santiago Castillo-Ramírez

Abstract The Gram-negative Acinetobacter genus has several species of clear medical relevance. Many fully sequenced genomes belonging to the genus have been published in recent years; however, there has not been a recent attempt to infer the evolutionary history of Acinetobacter with that vast amount of information. Here, through a phylogenomic approach, we established the most up-to-date view of the evolutionary relationships within this genus and highlighted several cases of poor classification, especially for the very closely related species within the Acinetobacter calcoaceticus–Acinetobacter baumannii complex (Acb complex). Furthermore, we determined appropriate phylogenetic markers for this genus and showed that concatenation of the top 13 gives a very decent reflection of the evolutionary relationships for the genus Acinetobacter. The intersection between our top markers and previously defined universal markers is very small. In general, our study shows that, although there seems to be hardly any universal markers, bespoke phylogenomic approaches can be used to infer the phylogeny of different bacterial genera. We expect that ad hoc phylogenomic approaches will be the standard in the years to come and will provide enough information to resolve intricate evolutionary relationships like those observed in the Acb complex.


2006 ◽  
Vol 04 (01) ◽  
pp. 59-74 ◽  
Author(s):  
YING-JUN HE ◽  
TRINH N. D. HUYNH ◽  
JESPER JANSSON ◽  
WING-KIN SUNG

To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a set of species is a well-studied problem in computational biology. One previously proposed method to infer a phylogenetic tree/network for a large set of species is by merging a collection of known smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching information is lost. However, little work has been done so far on inferring a phylogenetic tree/network from a specified set of trees when in addition, certain evolutionary relationships among the species are known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic tree/network which is consistent with all of the rooted triplets in a given set [Formula: see text] and none of the rooted triplets in another given set [Formula: see text]. Although NP-hard in the general case, we provide some efficient exact and approximation algorithms for a number of biologically meaningful variants of the problem.


Sign in / Sign up

Export Citation Format

Share Document