scholarly journals Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF), Part I: Case Study of Southern China

Author(s):  
Hugo Wai Leung Mak ◽  
Joshua L. Laughner ◽  
Jimmy Chi Hung Fung ◽  
Qindan Zhu ◽  
Ronald C. Cohen

Improving air quality and reducing human exposure to unhealthy levels of airborne chemicals are important global missions, particularly in China. Satellite remote sensing offers a powerful tool to examine regional trends in NO2, thus providing a direct measure of key parameters that strongly affect surface air quality. To accurately resolve spatial gradients in NO2 concentration using satellite observations and thus understand local and regional aspects of air quality, a priori input data at sufficiently high spatial and temporal resolution to account for pixel-to-pixel variability in the characteristics of the land and atmosphere are required. In this paper, we adapt the Berkeley High Resolution product (BEHR v3.0A, v3.0B and v3.0C) and meteorological outputs from the Weather Research and Forecasting (WRF) model to describe column NO2 in southern China. The BEHR approach is particularly useful for places with large spatial variabilities and terrain height differences such as China. We retrieved tropospheric NO2 vertical column density (TVCD) within part of southern China, for four seasons of 2015, based upon satellite datasets from Ozone Monitoring Instrument (OMI). Retrieval results are validated by comparing with MAX-DOAS tropospheric column measurements conducted in Guangzhou. BEHR retrieval algorithms are more consistent with MAX-DOAS measurements than OMI-NASA retrieval, opening new windows into research questions that require high spatial resolution, for example retrieving NO2 vertical column and ground pollutant concentration in China and other countries.

2018 ◽  
Vol 10 (11) ◽  
pp. 1789 ◽  
Author(s):  
Hugo Mak ◽  
Joshua Laughner ◽  
Jimmy Fung ◽  
Qindan Zhu ◽  
Ronald Cohen

Improving air quality and reducing human exposure to unhealthy levels of airborne chemicals are important global missions, particularly in China. Satellite remote sensing offers a powerful tool to examine regional trends in NO2, thus providing a direct measure of key parameters that strongly affect surface air quality. To accurately resolve spatial gradients in NO2 concentration using satellite observations and thus understand local and regional aspects of air quality, a priori input data at sufficiently high spatial and temporal resolution to account for pixel-to-pixel variability in the characteristics of the land and atmosphere are required. In this paper, we adapt the Berkeley High Resolution product (BEHR-HK) and meteorological outputs from the Weather Research and Forecasting (WRF) model to describe column NO2 in southern China. The BEHR approach is particularly useful for places with large spatial variabilities and terrain height differences such as China. There are two major objectives and goals: (1) developing new BEHR-HK v3.0C product for retrieving tropospheric NO2 vertical column density (TVCD) within part of southern China, for four months of 2015, based upon satellite datasets from Ozone Monitoring Instrument (OMI); and (2) evaluating BEHR-HK v3.0C retrieval result through validation, by comparing with MAX-DOAS tropospheric column measurements conducted in Guangzhou. Results show that all BEHR-HK retrieval algorithms (with R-value of 0.9839 for v3.0C) are of higher consistency with MAX-DOAS measurements than OMI-NASA retrieval (with R-value of 0.7644). This opens new windows into research questions that require high spatial resolution, for example retrieving NO2 vertical column and ground pollutant concentration in China and other countries.


2019 ◽  
Vol 12 (1) ◽  
pp. 491-516 ◽  
Author(s):  
Julien Chimot ◽  
J. Pepijn Veefkind ◽  
Johan F. de Haan ◽  
Piet Stammes ◽  
Pieternel F. Levelt

Abstract. Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas and under any atmospheric conditions. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, e.g. megacities, and/or biomass-burning episodes, affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases caused by aerosol scattering and absorption effects is one of the main retrieval challenges from air quality satellite instruments. In this study, the reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2−O2 band, over eastern China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last 2 years in view of an improved use of the OMI 477 nm O2−O2 band: the updated OMCLDO2 algorithm, which derives improved effective cloud parameters, the aerosol neural network (NN), which retrieves explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead of OMCLDO2 because it primarily estimates an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance dominated by fine scattering and weakly absorbing particles, e.g. from [-20%:-40%] to [0 %:20 %] in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 %:40 %], than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes a more realistic consideration of aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. For that purpose, several elements are recommended in this paper. Overall, we demonstrate the possibility of applying a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2−O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).


2020 ◽  
Author(s):  
Can Li ◽  
Nickolay A. Krotkov ◽  
Peter J. T. Leonard ◽  
Simon Carn ◽  
Joanna Joiner ◽  
...  

Abstract. The Ozone Monitoring Instrument (OMI) has been providing global observations of SO2 pollution since 2004. Here we introduce the new anthropogenic SO2 vertical column density (VCD) dataset in the version 2 OMI SO2 product (OMSO2 V2). As with the previous version (OMSO2 V1.3), the new dataset is generated with an algorithm based on principal component analysis of OMI radiances, but features several updates. The most important among those is the use of expanded lookup tables and model a priori profiles to estimate SO2 Jacobians for individual OMI pixels, in order to better characterize pixel-to-pixel variations in SO2 sensitivity, including over snow and ice. Additionally, new data screening and spectral fitting schemes have been implemented to improve the quality of the spectral fit. As compared with the planetary boundary layer SO2 dataset in OMSO2 V1.3, the new dataset has substantially better data quality, especially over areas that are relatively clean or affected by the south Atlantic anomaly. The updated retrievals over snow/ice yield more realistic seasonal changes in SO2 at high latitudes and offer enhanced sensitivity to sources during wintertime. An error analysis has been conducted to assess uncertainties in SO2 VCDs from both the spectral fit and Jacobian calculations. The uncertainties from spectral fitting are reflected in SO2 slant column densities (SCDs) and largely depend on the signal-to-noise ratio of the measured radiances, as implied by the generally smaller SCD uncertainties over clouds or for lower solar zenith angles. The SCD uncertainties for individual pixels are estimated to be ~ 0.15–0.3 DU (Dobson Units) between ~ 40° S and ~ 40° N and to be ~ 0.2–0.5 DU at higher latitudes. The uncertainties from the Jacobians are approximately ~ 50–100 % over polluted areas, and primarily attributed to errors in SO2 a priori profiles and cloud pressures, as well as the lack of explicit treatment for aerosols. Finally, the daily mean and median SCDs over the presumably SO2-free equatorial East Pacific have increased by only ~ 0.0035 DU and ~ 0.003 DU respectively over the entire 15-year OMI record; while the standard deviation of SCDs has grown by only ~ 0.02 DU or ~ 10 %. Such remarkable long-term stability makes the new dataset particularly suitable for detecting regional changes in SO2 pollution.


2020 ◽  
Vol 13 (11) ◽  
pp. 6175-6191
Author(s):  
Can Li ◽  
Nickolay A. Krotkov ◽  
Peter J. T. Leonard ◽  
Simon Carn ◽  
Joanna Joiner ◽  
...  

Abstract. The Ozone Monitoring Instrument (OMI) has been providing global observations of SO2 pollution since 2004. Here we introduce the new anthropogenic SO2 vertical column density (VCD) dataset in the version 2 OMI SO2 product (OMSO2 V2). As with the previous version (OMSO2 V1.3), the new dataset is generated with an algorithm based on principal component analysis of OMI radiances but features several updates. The most important among those is the use of expanded lookup tables and model a priori profiles to estimate SO2 Jacobians for individual OMI pixels, in order to better characterize pixel-to-pixel variations in SO2 sensitivity including over snow and ice. Additionally, new data screening and spectral fitting schemes have been implemented to improve the quality of the spectral fit. As compared with the planetary boundary layer SO2 dataset in OMSO2 V1.3, the new dataset has substantially better data quality, especially over areas that are relatively clean or affected by the South Atlantic Anomaly. The updated retrievals over snow/ice yield more realistic seasonal changes in SO2 at high latitudes and offer enhanced sensitivity to sources during wintertime. An error analysis has been conducted to assess uncertainties in SO2 VCDs from both the spectral fit and Jacobian calculations. The uncertainties from spectral fitting are reflected in SO2 slant column densities (SCDs) and largely depend on the signal-to-noise ratio of the measured radiances, as implied by the generally smaller SCD uncertainties over clouds or for smaller solar zenith angles. The SCD uncertainties for individual pixels are estimated to be ∼ 0.15–0.3 DU (Dobson units) between ∼ 40∘ S and ∼ 40∘ N and to be ∼ 0.2–0.5 DU at higher latitudes. The uncertainties from the Jacobians are approximately ∼ 50 %–100 % over polluted areas and are primarily attributed to errors in SO2 a priori profiles and cloud pressures, as well as the lack of explicit treatment for aerosols. Finally, the daily mean and median SCDs over the presumably SO2-free equatorial east Pacific have increased by only ∼ 0.0035 DU and ∼ 0.003 DU respectively over the entire 15-year OMI record, while the standard deviation of SCDs has grown by only ∼ 0.02 DU or ∼ 10%. Such remarkable long-term stability makes the new dataset particularly suitable for detecting regional changes in SO2 pollution.


2018 ◽  
Author(s):  
Julien Chimot ◽  
J. Pepijn Veefkind ◽  
Johan F. de Haan ◽  
Piet Stammes ◽  
Pieternel F. Levelt

Abstract. Global mapping of satellite tropospheric NO2 vertical column density (VCD), a key gas in air quality monitoring, requires accurate retrievals over complex urban and industrialized areas. The high abundance of aerosol particles in regions dominated by anthropogenic fossil fuel combustion, mega-cities and biomass burning affects the space-borne spectral measurement. Minimizing the tropospheric NO2 VCD biases under such conditions are one of the main challenges for the retrieval from air quality satellite instruments. In this study, reference Ozone Monitoring Instrument (OMI) DOMINO-v2 product was reprocessed over cloud-free scenes, by applying new aerosol correction parameters retrieved from the 477 nm O2-O2 band, over east China and South America for 2 years (2006–2007). These new parameters are based on two different and separate algorithms developed during the last two years in view of an improved use of the 477 nm O2-O2 band: (1) the updated OMCLDO2 algorithm which derives improved effective cloud parameters, (2) the aerosol neural network (NN) giving explicit aerosol parameters by assuming a more physical aerosol model. The OMI aerosol NN is a step ahead to OMCLDO2 by retrieving primarily an explicit aerosol layer height (ALH), and secondly an aerosol optical thickness τ for cloud-free observations. Overall, it was found that all the considered aerosol correction parameters reduce the biases identified in DOMINO-v2 over scenes in China with high aerosol abundance and scattering particles: e.g. from [−20 : −40] % to [0 : 20] % in summertime. The use of the retrieved OMI aerosol parameters leads in general to a more explicit aerosol correction and higher tropospheric NO2 VCD values, in the range of [0 : 40] %, than from the implicit correction with the updated OMCLDO2. This number overall represents an estimation of the aerosol correction strategy uncertainty nowadays for tropospheric NO2 VCD retrieval from space-borne visible measurements. The explicit aerosol correction theoretically includes more realistic aerosol multiple scattering and absorption effects, especially over scenes dominated by strongly absorbing particles, where the correction based on OMCLDO2 seems to remain insufficient. However, the use of ALH and τ from the OMI NN aerosol algorithm is not a straightforward operation and future studies are required to identify the optimal methodology. Several elements to be considered are recommended in this paper. Overall, we demonstrate the possibility to apply a more explicit aerosol correction by considering aerosol parameters directly derived from the 477 nm O2-O2 spectral band, measured by the same satellite instrument. Such an approach can, in theory, easily be transposed to the new-generation of space-borne instruments (e.g. TROPOMI on-board Sentinel-5 Precursor), enabling a fast reprocessing of tropospheric NO2 data over cloud-free scenes (cloudy pixels need to be filtered out), as well as for other trace gas retrievals (e.g. SO2, HCHO).


2011 ◽  
Vol 11 (11) ◽  
pp. 29807-29843 ◽  
Author(s):  
J.-T. Lin

Abstract. Vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx) inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±38%), 0.22 TgN (±46%), and 0.40 TgN (±48%) for the a posteriori anthropogenic, lightning and soil emissions, respectively, each about 24% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are each less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Overall, anthropogenic emissions are found to be the dominant source of NOx over East China with important implications for nitrogen control.


2015 ◽  
Vol 8 (6) ◽  
pp. 2279-2289 ◽  
Author(s):  
I. Ialongo ◽  
J. Hakkarainen ◽  
R. Kivi ◽  
P. Anttila ◽  
N. A. Krotkov ◽  
...  

Abstract. This paper shows the results of the comparison of satellite SO2 observations from OMI (Ozone Monitoring Instrument) and OMPS (Ozone Mapping Profiler Suite) with ground-based measurements during the Icelandic Holuhraun fissure eruption in September 2014. The volcanic plume reached Finland on several days during the month of September. The SO2 total columns from the Brewer direct sun (DS) measurements in Sodankylä (67.42° N, 26.59° E), northern Finland, are compared to the satellite data. The operational satellite SO2 products are evaluated for high latitude conditions (e.g. large solar zenith angle, SZA). The results show that the best agreement can be found for lowest SZAs, close-to-nadir satellite pixels, cloud fraction below 0.3 and small distance between the station and the centre of the pixel. Under good retrieval conditions, the difference between satellite data and Brewer measurements remains mostly below the uncertainty on the satellite SO2 retrievals (up to about 2 DU at high latitudes). The satellite products assuming a priori profile with SO2 predominantly in the planetary boundary layer give total column values with the best agreement with the ground-based data. The analysis of the SO2 surface concentrations at four air quality stations in northern Finland shows that the volcanic plume coming from Iceland was located very close to the surface. This is connected to the fact that this was a fissure eruption and most of the SO2 was emitted into the troposphere. This is an exceptional case because the SO2 volcanic emissions directly affect the air quality levels at surface in an otherwise pristine environment like northern Finland. The time evolution of the SO2 concentrations peaks during the same days when large SO2 total column values are measured by the Brewer in Sodankylä and enhanced SO2 signal is visible over northern Finland from the satellite maps. Thus, the satellite retrievals were able to detect the spatiotemporal evolution of the volcanic plume as compared to the surface observations. Furthermore, direct-broadcast SO2 satellite data (from both OMI and OMPS instruments) are compared for the first time against ground-based observations.


2014 ◽  
Vol 14 (19) ◽  
pp. 10565-10588 ◽  
Author(s):  
S. Choi ◽  
J. Joiner ◽  
Y. Choi ◽  
B. N. Duncan ◽  
A. Vasilkov ◽  
...  

Abstract. We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth > 10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.


2009 ◽  
Vol 9 (5) ◽  
pp. 22271-22330 ◽  
Author(s):  
V. Huijnen ◽  
H. J. Eskes ◽  
B. Amstrup ◽  
R. Bergstrom ◽  
K. F. Boersma ◽  
...  

Abstract. We present model results for tropospheric NO2 from 9 regional models and 2 global models that are part of the GEMS-RAQ forecast system, for July 2008 to June 2009 over Europe. These modeled NO2 columns are compared with OMI NO2 satellite retrievals and surface observations from the Dutch Air Quality Network. The participating models apply principally the same emission inventory, but vary in model resolution (0.15 to 0.5°), chemical mechanism, meteorology and transport scheme. For area-averaged columns only a small bias is found when the averaging kernel is neglected in the comparison to OMI NO2 columns. The reason for this is that TM4 a priori profiles have higher NOx concentrations in the free troposphere (where sensitivity to NO2 is high) and higher NOx concentrations in the surface layers (where sensitivity to NO2 is low) than RAQ models, effectively cancelling the effect of applying the averaging kernel. We attribute these low NO2 concentrations in the RAQ models to missing emissions from aircraft and lightning. It is also shown that the NO2 concentrations from the upper part of the troposphere (higher than 500 hPa) contribute up to 20% of the total tropospheric NO2 signal observed by OMI. Compared to the global models the RAQ models show a better correlation to the OMI NO2 observations, which are characterized by high spatial variation due to the short lifetime for NO2. The spread in the modeled tropospheric NO2 column is on average 20–40%. In summer the mean of all models is on average 46% below the OMI observations, whereas in winter the models are more in line with OMI. On the other hand the models on average under-predict surface concentrations in winter by 24% and are more in line with observations in summer. These findings suggest that OMI tropospheric columns in summer over polluted regions are biased high by about 40%. The diurnal cycle and profiles in the regional models are well in line, and the profile shapes correspond well to results from the global models. The analyses against OMI observations have proven to be very useful to initiate model improvements, and to quantify uncertainties in the retrieval product.


Sign in / Sign up

Export Citation Format

Share Document