scholarly journals Molecular Docking Studies of Some Novel Fluoroquinolone Derivatives

Author(s):  
Lucia Pintilie ◽  
Amalia Stefaniu

An important parameter in the development of a new drug is the drug's affinity to the identified target (protein/enzyme). Predicting the ligand binding to the target (protein/enzyme) by molecular simulation would allow the synthesis to be restricted to the most promising compounds.A restricted hybrid HF-DFT calculation was performed in order to obtain the most stable conformer of each ligand and a series of DFT calculations using the B3LYP levels with 6-31G* basis set has been conducted. The docking studies of the quinolone compounds will be performed with the CLC Drug Discovery Workbench to identify and visualize the ligand-receptor interaction mode.

Author(s):  
S. Sarithamol ◽  
Divya V. ◽  
Sunitha V. R. ◽  
Suchitra Surendran ◽  
V. L. Pushpa ◽  
...  

Objective: Interleukin 4, an important cytokine, has the major role in the immunomodulatory responses associated with asthma. The present study focused on the involvement of single nucleotide polymorphism variation (SNP) of interleukin 4 (IL4) in the development of disease, asthma and designing small molecules for the inhibition of IL4 through in silico strategy.Methods: Identification of disease causing SNP will be a wise approach towards the phenotype specific treatment. A human origin deleterious no synonymous SNP of IL4 were found out in the chromosome region 5q31-q33 (rs199929962) (T/C). Proteins of the corresponding nucleotide variation were identified and were subjected to characterization studies for selecting the most appropriate one for further mutational analysis and molecular docking studies.Results: Influence of microbes on SNP variation of IL4 gene leading to asthma was found to be insignificant by metagenomic studies. Gene responsive drugs were identified through environmental factor analysis. The drug candidates including corticosteroids were subjected to protein interaction studies by in silico means. The pharmacophoric feature derived from drug receptor interaction was utilized for virtual screening on a dataset of anti-inflammatory phytomolecules. The scaffolds of ellagic acid and quercetin were identified as potential nonsteroidal entities which can shield the asthmatic activities.Conclusion: Developing small molecules using these scaffolds taking interleukin 4 as a target will be an adequate solution for steroid resistant asthma.


2020 ◽  
Vol 65 (11) ◽  
pp. 5393-5404
Author(s):  
Urmila Saha ◽  
Malay Dolai ◽  
Gopinatha Suresh Kumar ◽  
Ray J. Butcher ◽  
Saugata Konar

2020 ◽  
Vol 16 (1) ◽  
pp. 54-72 ◽  
Author(s):  
Surabhi Pandey ◽  
B.K. Singh

Background: There are over 44 million persons who suffer with Alzheimer’s disease (AD) worldwide, no existence of cure and only symptomatic treatments are available for it. The aim of this study is to evaluate the anti-Alzheimer potential of designed AChEI analogues using computer simulation docking studies. AChEIs are the most potential standards for treatment of AD, because they have proven efficacy. Among all AChEIs donepezil possesses lowest adverse effects, it can treat mildmoderate- severe AD and only once-daily dosing is required. Therefore, donepezil is recognized as a significant prototype for design and development of new drug molecule. Methods: In this study the Inhibitory potential of the design compounds on acetylcholinesterase enzyme has been evaluated. Docking studies has been performed which further analyzed by in-silico pharmacokinetic evaluation through pharmacopredicta after that Interaction modes with enzyme active sites were determined. Docking studies revealed that there is a strong interaction between the active sites of AChE enzyme and analyzed compounds. Results: As a result 26 compounds have been indicates better inhibitory activity on AChE enzyme and all the screening parameters have also been satisfied by all 26 compounds. From these 26 compounds, six compounds 17, 18, 24, 30, 36 and 56 are found to be the most potent inhibitors of this series by insilico study through INVENTUS v 1.1 software, having highest bio-affinities i.e. - 8.51, - 7.67, - 8.30, - 7.59, - 8.71 and -7.62 kcal/mol respectively, while the standard or reference drug donepezil had binding affinity of - 6.32 kcal/mol. Conclusion: Computer aided drug design approach has been playing an important role in the design and development of novel anti- AD drugs. With the help of structure based drug design some novel analogues of donepezil have been designed and the molecular docking studies with structure based ADME properties prediction studies is performed for prediction of AChE inhibitory activity. The binding mode of proposed compounds with target protein i.e. AChE has been evaluated and the resulting data from docking studies explains that all of the newly designed analogues had significantly high affinity towards target protein compared to donepezil as a reference ligand.


2021 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
Achal Mishra ◽  
Radhika Waghela

SARS-CoV-2, a new type of Coronavirus, has affected more millions of people worldwide. From the spread of this infection, many studies related to this virus and drug designing for the treatment have been started. Most of the studies target the SARS-CoV-2 main protease, spike protein of SASR-CoV-2, and some are targeting the human furin protease. In the current work, we chose the clinically used drug molecules remdesivir, favipiravir, lopinavir, hydroxychloroquine, and chloroquine onto the target protein SARS-CoV-2 main protease. Docking studies were performed using Arguslab, while Discovery Studio collected 2D and 3D pose views with the crystal structure of COVID-19 main protease in complex with an inhibitor N3 with PDB ID 6LU7. Computational studies reveal that all ligands provided good binding affinities towards the target protein. Among all the chosen drugs, lopinavir showed the highest docking score of -11.75 kcal/mol. The results from this molecular docking study encourage the use of lopinavir as the first-line treatment drug due to its highest binding affinity.


2021 ◽  
Vol 6 (3) ◽  
pp. 186-203
Author(s):  
Meenakshi Singh ◽  
Mukesh Kumar ◽  
Neha Singh ◽  
Shikha Sharma ◽  
Neha Agarwal ◽  
...  

In this work, the quantum computations of newly synthesized N-(4-hydroxyphenyl)picolinamide (4-HPP) is focused. Density functional theory (DFT) was used to perform the quantum calculations. The optimized molecular geometry was obtained using the B3LYP and MP2 methods employing 6-311++G(d,p) basis set, which served as the foundation for all subsequent calculations. The experimental data was compared with the calculated vibrational frequencies and NMR spectra. With the use of the molecular electrostatic potential surface (MEP) and the Fukui functions, the charge distribution, reactive regions and electrostatic potential were displayed. The chemical activity of the 4-HPP was evaluated by the energy difference between HOMO and LUMO. For better understanding of the intermolecular charge transfer (ICT), natural bond order analysis (NBO) was used. At various temperatures, thermodynamic parameters such as Gibb’s free energy, enthalpy and entropy were determined. The electrophilicity index was used to portray the molecule’s bioactivity and molecular docking was used to show the interaction between the ligand and the protein. The nature of the molecule was determined by drug similarity when expecting its application for medical purposes.


2016 ◽  
Vol 3 (3) ◽  
pp. 1
Author(s):  
Fajeelath Fathima ◽  
Abitha Haridas ◽  
Baskar Lakshmanan

PPARs play crucial role in the regulation of cellular differentiation, development and metabolism of carbohydrates, lipids and proteins in human, of which PPAR- ? has pivotal role in glucose homeostasis. In modern drug designing, molecular docking is routinely used for understanding drug receptor interaction. In the present study molecular docking were performed on a diverse set of 3,5-disubstituted thiazolidinedione chalcone derivatives that demonstrate antidiabetic activity by stimulating PPAR- ?. Among the designed analogues, e3, a3, b3 and c3 showed significant binding free energy of -12.29, -12.04, -11.53 and -11.45 kcal/mol with predicted inhibitory constant values of 987.38 pM, 1.5, 3.53 and 4.04 nM respectively and all the selected compounds were compared with standard drug Rosiglitazone.


Sign in / Sign up

Export Citation Format

Share Document