Docking studies of 3,5-disubstituted thiazolidinedione chalcones as PPAR-? agonist

2016 ◽  
Vol 3 (3) ◽  
pp. 1
Author(s):  
Fajeelath Fathima ◽  
Abitha Haridas ◽  
Baskar Lakshmanan

PPARs play crucial role in the regulation of cellular differentiation, development and metabolism of carbohydrates, lipids and proteins in human, of which PPAR- ? has pivotal role in glucose homeostasis. In modern drug designing, molecular docking is routinely used for understanding drug receptor interaction. In the present study molecular docking were performed on a diverse set of 3,5-disubstituted thiazolidinedione chalcone derivatives that demonstrate antidiabetic activity by stimulating PPAR- ?. Among the designed analogues, e3, a3, b3 and c3 showed significant binding free energy of -12.29, -12.04, -11.53 and -11.45 kcal/mol with predicted inhibitory constant values of 987.38 pM, 1.5, 3.53 and 4.04 nM respectively and all the selected compounds were compared with standard drug Rosiglitazone.

2010 ◽  
Vol 29 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Antonino Lauria ◽  
Mario Ippolito ◽  
Marco Fazzari ◽  
Marco Tutone ◽  
Francesco Di Blasi ◽  
...  

Author(s):  
A. A. Kazi ◽  
V. A. Chatpalliwar

Aims: Glucokinase (GK) is a cytoplasmic enzyme that metabolizes the glucose to glucose- 6-phosphate and supports the adjusting of blood glucose levels within the normal range in humans. In pancreatic β-cells, it plays a leading role by governing the glucose-stimulated secretion of insulin and in liver hepatocyte cells, it controls the metabolism of carbohydrates. GK acts as a promising drug target for the treatment of patients with type 2 diabetes mellitus (T2DM). Study Design: In the current study, the goal is to identify new substituted benzamide derivatives and test them via molecular docking as possible anti-diabetic drugs. Place and Duration of Study: The present work has been carried out at S.N.J.B’s S.S.D.J. College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India during the time period of December-2020 to February-2021. Methodology: This work involved designing novel methyl 2-((4-(benzamido)phenyl)sulfanyl)-1,2,3,4-tetrahydro-6-methylpyrimidine-5-carboxylate derivatives and their screening by molecular docking studies to determine the binding interactions for the best-fit conformations in the binding site of the GK enzyme. Autodockvina 1.1.2 in PyRx 0.8 was used to perform the docking studies of all the designed novel derivatives and native ligand against the crystal structure of GK. Based on the results of docking studies, the selected molecules will be tested for their antidiabetic activity in the animal models. Results: Amongst the designed derivatives, compounds A2, A3, A8, A10, A11, A13, A14, A16, A17, and A18 have shown better binding free energy (between -8.7 to -10.3 kcal/mol) than the native ligand present in the enzyme structure. In present investigation, many molecules had formed strong hydrogen bond with Arg-63 which indicate the potential to activate GK. Conclusion: From above results it has been observed that these designed benzamide derivatives have potential to activate the human GK which enables us to proceed for the syntheses of these derivatives.


2021 ◽  
Vol 12 (1) ◽  
pp. 186-214
Author(s):  
Manish Devgun ◽  
Sushil Prasad ◽  
SukhbirLal Khokra ◽  
Rakesh Narang

Molecular docking is the identification of ligand’s correct binding geometry i.e pose in the binding site and estimation of its binding affinity for the rational design of drug molecule. The current study endeavored the high throughput insilico screening of 24 compounds docked with their respective protein using PyRx-Virtual Screening Tool software. Out of 24 compounds, almost all test compounds showed a very good binding affinity score. Fluconazole was used as a standard drug in case of Antifungal, Ciprofloxacin in case of Antibacterial, and Albendazole in case of Antihelmintics. More negative is the binding free energy score, more favorable is the pose for binding to protein active site. Based on H-bond interactions of these 24 compounds, Compounds 3a5, 3c3, 3d5, 3d6 were found to be the similar outcome for antifungal activity as fluconazole, Compound3a1 for antibacterial, and Compounds 3b5, 3d6 for the antihelmintic agent. Furthermore, the affinity of any small ligand molecules can be considered as an extraordinary tool in the field of drug design and offer imminent in future examination to build up potent antimicrobial agents.


2019 ◽  
Vol 15 (2) ◽  
pp. 186-195 ◽  
Author(s):  
Samridhi Thakral ◽  
Vikramjeet Singh

Background: Postprandial hyperglycemia can be reduced by inhibiting major carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase which is an effective approach in both preventing and treating diabetes. Objective: The aim of this study was to synthesize a series of 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl] benzoic acid derivatives and evaluate α-glucosidase and α-amylase inhibitory activity along with molecular docking and in silico ADMET property analysis. Method: Chlorosulfonation of 2,4-dichloro benzoic acid followed by reaction with corresponding anilines/amines yielded 2,4-dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic acid derivatives. For evaluating their antidiabetic potential α-glucosidase and α-amylase inhibitory assays were carried out. In silico molecular docking studies of these compounds were performed with respect to these enzymes and a computational study was also carried out to predict the drug-likeness and ADMET properties of the title compounds. Results: Compound 3c (2,4-dichloro-5-[(2-nitrophenyl)sulfamoyl]benzoic acid) was found to be highly active having 3 fold inhibitory potential against α-amylase and 5 times inhibitory activity against α-glucosidase in comparison to standard drug acarbose. Conclusion: Most of the synthesized compounds were highly potent or equipotent to standard drug acarbose for inhibitory potential against α-glucosidase and α-amylase enzyme and hence this may indicate their antidiabetic activity. The docking study revealed that these compounds interact with active site of enzyme through hydrogen bonding and different pi interactions.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hadiza Abdulrahman Lawal ◽  
Adamu Uzairu ◽  
Sani Uba

Abstract Background Cancer of the breast is known to be among the top spreading diseases on the globe. Triple-negative breast cancer is painstaking the most destructive type of mammary tumor because it spreads faster to other parts of the body, with high chances of early relapse and mortality. This research would aim at utilizing computational methods like quantitative structure–activity relationship (QSAR), performing molecular docking studies and again to further design new effective molecules using the QSAR model parameters and to analyze the pharmacokinetics “drug-likeliness” properties of the new compounds before they could proceed to pre-clinical trials. Results The QSAR model of the derivatives was highly robust as it also conforms to the least minimum requirement for QSAR model from the statistical assessments of (R2) = 0.6715, (R2adj) = 0.61920, (Q2) = 0.5460 and (R2pred) of 0.5304, and the model parameters (AATS6i and VR1_Dze) were used in designing new derivative compounds with higher potency. The molecular docking studies between the derivative compounds and Maternal Embryonic Leucine Zipper Kinase (MELK) protein target revealed that ligand 2, 9 and 17 had the highest binding affinities of − 9.3, − 9.3 and − 8.9 kcal/mol which was found to be higher than the standard drug adriamycin with − 7.8 kcal/mol. The pharmacokinetics analysis carried out on the newly designed compounds revealed that all the compounds passed the drug-likeness test and also the Lipinski rule of five. Conclusions The results obtained from the QSAR mathematical model of parthenolide derivatives were used in designing new derivatives compounds that were more effective and potent. The molecular docking result of parthenolide derivatives showed that compounds 2, 9 and 17 had higher docking scores than the standard drug adriamycin. The compounds would serve as the most promising inhibitors (MELK). Furthermore, the pharmacokinetics analysis carried out on the newly designed compounds revealed that all the compounds passed the drug-likeness test (ADME and other physicochemical properties) and they also adhered to the Lipinski rule of five. This gives a great breakthrough in medicine in finding the cure to triple-negative breast cancer (MBA-MD-231 cell line).


Author(s):  
S. Sarithamol ◽  
Divya V. ◽  
Sunitha V. R. ◽  
Suchitra Surendran ◽  
V. L. Pushpa ◽  
...  

Objective: Interleukin 4, an important cytokine, has the major role in the immunomodulatory responses associated with asthma. The present study focused on the involvement of single nucleotide polymorphism variation (SNP) of interleukin 4 (IL4) in the development of disease, asthma and designing small molecules for the inhibition of IL4 through in silico strategy.Methods: Identification of disease causing SNP will be a wise approach towards the phenotype specific treatment. A human origin deleterious no synonymous SNP of IL4 were found out in the chromosome region 5q31-q33 (rs199929962) (T/C). Proteins of the corresponding nucleotide variation were identified and were subjected to characterization studies for selecting the most appropriate one for further mutational analysis and molecular docking studies.Results: Influence of microbes on SNP variation of IL4 gene leading to asthma was found to be insignificant by metagenomic studies. Gene responsive drugs were identified through environmental factor analysis. The drug candidates including corticosteroids were subjected to protein interaction studies by in silico means. The pharmacophoric feature derived from drug receptor interaction was utilized for virtual screening on a dataset of anti-inflammatory phytomolecules. The scaffolds of ellagic acid and quercetin were identified as potential nonsteroidal entities which can shield the asthmatic activities.Conclusion: Developing small molecules using these scaffolds taking interleukin 4 as a target will be an adequate solution for steroid resistant asthma.


Author(s):  
Peter Juma Ochieng ◽  
Tony Sumaryada ◽  
Daniel Okun

  Objective: To perform molecular docking and pharmacokinetic prediction of momordicoside F2, beta-sitosterol, and cis-N-feruloyltyramine herbal derivatives as maltase-glucoamylase (MGAM) inhibitors for the treatment of diabetes.Methods: The herbal derivatives and standard drug miglitol were docked differently onto MGAM receptor using AutoDock Vina software. In addition, Lipinski’s rule, drug-likeness, and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were analyzed using Molinspiration, ADMET structure–activity relationship, and prediction of activity spectra for substances online tools.Results: Docking studies reveal that momordicoside F2, beta-sitosterol, and cis-N-feruloyltyramine derivatives have high binding affinity to the MGAM receptor (−7.8, −6.8, and −6.5 Kcal/Mol, respectively) as compared to standard drug miglitol (−5.3 Kcal/Mol). In addition, all the herbal derivatives indicate good bioavailability (topological polar surface area <140 Ȧ and Nrot <10) without toxicity or mutagenic effects.Conclusion: The molecular docking and pharmacokinetic information of herbal derivatives obtained in this study can be utilized to develop novel MGAM inhibitors having antidiabetic potential with better pharmacokinetic and pharmacodynamics profile.


Sign in / Sign up

Export Citation Format

Share Document