Quantum Computational, Spectroscopic and Molecular Docking Studies on N-(4-Hydroxyphenyl)picolinamide

2021 ◽  
Vol 6 (3) ◽  
pp. 186-203
Author(s):  
Meenakshi Singh ◽  
Mukesh Kumar ◽  
Neha Singh ◽  
Shikha Sharma ◽  
Neha Agarwal ◽  
...  

In this work, the quantum computations of newly synthesized N-(4-hydroxyphenyl)picolinamide (4-HPP) is focused. Density functional theory (DFT) was used to perform the quantum calculations. The optimized molecular geometry was obtained using the B3LYP and MP2 methods employing 6-311++G(d,p) basis set, which served as the foundation for all subsequent calculations. The experimental data was compared with the calculated vibrational frequencies and NMR spectra. With the use of the molecular electrostatic potential surface (MEP) and the Fukui functions, the charge distribution, reactive regions and electrostatic potential were displayed. The chemical activity of the 4-HPP was evaluated by the energy difference between HOMO and LUMO. For better understanding of the intermolecular charge transfer (ICT), natural bond order analysis (NBO) was used. At various temperatures, thermodynamic parameters such as Gibb’s free energy, enthalpy and entropy were determined. The electrophilicity index was used to portray the molecule’s bioactivity and molecular docking was used to show the interaction between the ligand and the protein. The nature of the molecule was determined by drug similarity when expecting its application for medical purposes.

2019 ◽  
Vol 31 (6) ◽  
pp. 1332-1342 ◽  
Author(s):  
KATTAESWAR SRIKANTH ◽  
RAMAIAH KONAKANCHI ◽  
JYOTHI PRASHANTH

The experimental FT-IR spectral analysis of 9-chloroanthracene has worked out by using density functional theory (DFT). The optimized molecular structure and minimum energy of 9-chloroanthracene has analyzed using DFT/B3LYP functional employing 6-311++G(d,p) basis set. The vibrational frequencies along with IR intensities were computed, scaling was used for a better fit between the experimental and computed frequencies, they agreed with rms error 8.48 cm-1 for 9-chloroanthracene. The NLO behaviour of the molecule is investigated from first-order hyperpolarizability. The HOMO and LUMO energies are evaluated to demonstrate the chemical stability, reactivity of molecule. The MESP over the molecules were plotted to evaluate electron density regions and thermodynamic parameters are calculated. Hyper conjugative interactions and charge delocalization of the molecule study from NBO analysis and Fukui functions are evaluated for 9-chloroanthracene. The molecular docking studies were performed against anticancer protein targets Tyrosinase and HER2.


2021 ◽  
Vol 6 (2) ◽  
pp. 128-140
Author(s):  
Mukesh Kumar ◽  
Satyavir Singh ◽  
Nazia Siddiqui ◽  
Saleem Javed

In present work, 1-methylnicotinamide (1-MNA) has been investigated theoretically by density functional theory approach and investigated its vibrational spectroscopy. To complete the structure optimization, determination of vibrational frequencies and other valuable parameters, B3LYP method used with the 6-311++G(d,p) basis set. Atoms in molecules theory (AIM) had been used to evaluate ellipticity, isosurface projection by electron localization function and binding energies. The IR and Raman spectra have also been calculated computationally. NBO analysis employed to determine interactions of donor and acceptor. Fukui functions and molecular electrostatic potential (MEP) showed reactive regions of the molecule. UV-vis spectrum calculated using TD-DFT/PCM methods with different solvents. Thermodynamic properties like free energy, enthalpy and entropy with various temperature were calculated. By the use of the electrophilicity index, the probability of the bioactive nature of the molecule was proved theoretically. Protein-ligand interactions calculated and established by molecular docking. The biological investigations for druglikeness also employed for the (1-MNA).


Author(s):  
R. Solaichamy ◽  
J. Karpagam

In this study, optimized geometry, spectroscopic (FT-IR, FT-Raman, UV) analysis, and electronic structure analysis of Abacavir were investigated by utilizing DFT/B3LYP with 6-31G(d,p) as a basis set. Complete vibrational assignments and correlation of the fundamental modes for the title compound were carried out. The calculated molecular geometry has been compared with available X-ray data of Abacavir. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The molecular stability and bond strength have been investigated by applying the Natural Bond Orbital (NBO) analysis. The computational molecular docking studies of title compound have been performed.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Najet Aouled Dlala ◽  
Younes Bouazizi ◽  
Houcine Ghalla ◽  
Naceur Hamdi

Chromenes and their derivatives have been considered as an important class of oxygen-containing heterocycles. There has been an increasing interest in the study of chromenes due to their biological activity. Herein, the structural, electronic, and vibrational properties of a chromene derivative, entitled 2‐amino‐5‐oxo‐4‐phenyl‐4,5‐dihydropyrano[3,2‐c]chromene‐3‐carbonitrile and abbreviated as Chrom-D, have been reported. The FT-IR, UV-vis, and 1H-NMR and 13C-NMR chemical shifts’ measurements were recorded. The molecular geometry and the vibrational frequencies are computed in the frame of density functional theory at the B3LYP/6-311++G(d,p) level of theory. The noncovalent interactions in the crystal lattice which are responsible to the 3D crystal structure of Chrom-D are investigated based on Hirshfeld surfaces and topological reduced density gradient (RDG) analysis. Molecular electrostatic potential surface, Mulliken charges, and Fukui functions are computed in order to find out the electrophilic and nucleophilic sites. The electronic properties of the title compound have been studied based on the TD-DFT calculations. Finally, Chrom-D has been evaluated as a multifunctional agent against Alzheimer’s disease (AD).


2020 ◽  
Vol 32 (10) ◽  
pp. 2475-2485
Author(s):  
M. Latha Beatrice ◽  
S. Mary Delphine ◽  
M. Amalanathan ◽  
H. Marshan Robert

The molecular structure and vibrational spectra of 10H-dibenzo[b,e][2,4]oxazine was calculated with the help of B3LYP density functional theory (DFT) using 6-311G (d,p) basis set. The FT-IR and FT-Raman spectra of title compound were interpreted by comparing the experimental results with the theoretical B3LYP/6-311G (d,p) calculations. The experimental observed vibrational frequencies are compared with the calculated vibrational frequencies and they are in good agreement with each other. Natural bond orbital (NBO) analysis interprets the intramolecular contacts of title molecule. The 1H and 13C NMR chemical movements of the particle have been determined by the gauge independent atomic orbital (GIAO) strategy and contrasted with the experimental outcome. The deciphered HOMO and LUMO energies showed the chemical stability of the molecules. Fukui capacity and natural charge investigation on atomic charges of the title molecule have been discussed. Docking reads were performed for title molecule utilizing the molecular docking programming with fungicidal dynamic PDB’s.


2021 ◽  
Author(s):  
Fredrick Asogwa ◽  
Hitler Louis ◽  
Dollars I. Kenthurky ◽  
Obieze C. Enudi

Abstract The presence of nitrogen atom either on the diene or the dienophile structure gives rise to aza or imino-Diels-Alder reactions (DARs). Among hetero-DARs, imino-dienophiles yields numerous functionalized compounds with numerous biological activities including but not limited to antifungal, antibacterial and enzymatic properties. Density functional theory (DFT) using the B3LYP functional at the 6-31+G (d, p) basis set along with topological studies (QTAIM) were used for the investigation of 10 different (SD1-SD10) DARs which differ in the nature of substituents groups attached to the diene molecule. The study indicates higher electron density and stronger interaction for substituted dienes with the cycloalkanes, furan, carbonyl, and -OH groups. It was observed in the HOMO-LUMO energy differences that the bulky groups; SD3, SD4, and SD6 had destabilization energy of -7.86 and 0.09, -7.88 and 0.10 and -7.50 and -0.014 eV respectively in their HOMO and LUMO levels while the halogen substituted dienes SD1, SD2, and SD5 had -8.20 and -0.32, -8.31 and -0.34 and -8.19 and -0.20 eV respectively. The study showed that synthesis of hetero-nuclear aza-cyclohexene is achieved faster with furan substituent of energy gap 7.534 eV and molecular hardness of 3.677 compared to 7.799 (SD7) -8.100 eV (SD8) and 3.899 (SD7) - 4.050 (SD8) respectively scored by other substituents noting that smaller energy gap leads to higher reactivity. HCOCH3 (SD8) retarded the rate of the reaction by about 58% (unspontaneous) following the calculated Gibb’s free energy of activation while SD6 in the ELF analysis showed complete covalent character against other cycloalkanes that showed dual characteristics of a double and single bond between N-C at their transition states.


2020 ◽  
Vol 17 ◽  
Author(s):  
Sangeeta Srivastava ◽  
Nadeem Ahmad Ansari ◽  
Sadaf Aleem

: Gallic acid is abundantly found in amla (Phyllanthus emblica), a deciduous of the family phyllanthaceae. Gallic acid, the major constituent of the plant was methylated to 3,4,5 trimethoxy gallic acid, which then underwent steglich esterification first with paracetamol and then with 4-hydroxy acetophenone to yield 4-acetamidophenyl 3,4,5-trimethoxybenzoate and 4-acetyl phenyl 3,4,5-trimethoxybenzoate “respectively”. 1H NMR, 13C NMR, UV, FT-IR and mass spectroscopy were used to characterize the synthesized compounds. Density functional theory (B3YLP) using 6-31G (d,p) basis set have been used for quantum chemical calculations. AIM (Atom in molecule) approach depicted weak molecular interactions within the molecules whereas the reactive site and reactivity within the molecule were examined by global and local reactivity descriptors. The HOMO and LUMO energies and frontier orbital energy gap were calculated by time dependant DFT approach using IEFPCM model. Small value for HOMO–LUMO energy gap indicated that easier charge transfer occurs within compound 4. The nucleophilic and electrophilic reactivity were determined by MEP (molecular electrostatic potential) experiment. Polarizability, dipole moment, and first hyperpolarizability values were calculated to depict the NLO (nonlinear optical) property of both the synthesized compounds. The antimicrobial activity was also carried out and broad spectrum antibacterial activity against several strains of bacteria and certain unicellular fungi were exhibited by synthesized compound 3.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


2020 ◽  
pp. 174751982097858
Author(s):  
M Vraneš ◽  
S Ostojić ◽  
Č Podlipnik ◽  
A Tot

Comparative molecular docking studies on creatine and guanidinoacetic acid, as well as their phosphorylated analogues, creatine phosphate, and phosphorylated guanidinoacetic acid, are investigated. Docking and density functional theory studies are carried out for muscle creatine kinase. The changes in the geometries of the ligands before and after binding to the enzyme are investigated to explain the better binding of guanidinoacetic acid and phosphorylated guanidinoacetic acid compared to creatine and creatine phosphate.


2021 ◽  
Author(s):  
Hussein Elganzory

Abstract New complexes of Cu(I,II), Zn(II) and Cd(II) of thiosemicarbazide ligand 1-(p-(methylanilinocetyl-4-phenyl-thiosemicarbazide)(H2LB) have been prepared and characterized by 1HNMR, Mass spectra, FT-IR, elemental analyses, molar conductance, UV-visible spectra, magnetic susceptibility measurements, thermogravimetric analysis (TGA/DTG) and X-ray diffraction pattern before and after irradiation. The results confirmed that gamma ray enhanced the stability of irradiated compounds as compared to non-irradiated compounds. XRD patterns proved that increasing the crystallinity of the samples and the particles in nano range after gamma irradiation. The obtained data indicated that the Cu(I) and Cd(II) ions coordinated to the ligand through the (C = O), N(2)H and (C = S), the ligand behaves as neutral tridentate. While in complexes Cu(II) and Zn(II)complexes (B2 and B3) the ligand behave as neutral tetradentate and coordination take place via (C = O) and two N(2)H. These studies revealed that, two kinds of stereochemical geometries; Cu(II) and Zn(II) complexes were predicted to be octahedral, Cu(I) and Cd(II)complexes were found to be tetrahedral. The theoretical conformational structure analyses were performed using density functional theory for ligand and complexes at B3LYP functional with 6-31G(++)d,p basis set for ligand and LANL2DZ basis set for complexes. The ligand and its metal complexes have been tested for their inhibitory effect on the growth of bacteria against gram-positive (Streptococcus pyogenes) and gram-negative (Escherichia coli). Results suggested that in case of 1µg/ml and 5µg/ml for Cu(II) and Zn(II) complexes have higher activity than other complexes. The chelation could facilitate the ability to cross the cell membrane of E. coli and can be explained by Tweedy’s chelation theory. Molecular docking investigation proved that; the Zn(II) complex had interesting interactions with active site amino acids of topoisomerase II DNA gyrase enzymes (code: 2XCT).


Sign in / Sign up

Export Citation Format

Share Document