scholarly journals Persistence Landscape based Topological Data Analysis for Personalized Arrhythmia Classification

Author(s):  
Yan Yan ◽  
Kamen Ivanov ◽  
Jian Cen ◽  
Qiu-Hua Liu ◽  
Lei Wang

Data can be illustrated in shapes, and the shapes could provide insight for data modeling and information extraction. Topological data analysis provides an alternative insight in biomedical data analysis and knowledge discovery with the algebra topology tools. In present work, we study the application of topological data analysis for personalized electrocardiographic signal classification toward arrhythmia analysis. Using phase space reconstruction technique, the signal samples are converted into point clouds for topological analysis facility. With topological techniques the persistence landscapes from the point clouds are extracted as features to perform the arrhythmia classification task. We find that the proposed method is robust to the training set size, with only a training set size of 20% percents, the normal heartbeat class are 100% recognized, ventricular beats for 97.13%, supra-ventricular beats for 94.27% and fusion beats for 94.27% within the corresponding experiments. The property of keeping high performance when using smaller training sample proves that the proposed method is especially applicable to personalized analysis. With the present study, we show that the topological data analysis technique could be a useful tool in biomedical signal analysis, and provide powerful ability in personalized analysis.

2021 ◽  
Vol 4 ◽  
Author(s):  
Anuraag Bukkuri ◽  
Noemi Andor ◽  
Isabel K. Darcy

The emergence of the information age in the last few decades brought with it an explosion of biomedical data. But with great power comes great responsibility: there is now a pressing need for new data analysis algorithms to be developed to make sense of the data and transform this information into knowledge which can be directly translated into the clinic. Topological data analysis (TDA) provides a promising path forward: using tools from the mathematical field of algebraic topology, TDA provides a framework to extract insights into the often high-dimensional, incomplete, and noisy nature of biomedical data. Nowhere is this more evident than in the field of oncology, where patient-specific data is routinely presented to clinicians in a variety of forms, from imaging to single cell genomic sequencing. In this review, we focus on applications involving persistent homology, one of the main tools of TDA. We describe some recent successes of TDA in oncology, specifically in predicting treatment responses and prognosis, tumor segmentation and computer-aided diagnosis, disease classification, and cellular architecture determination. We also provide suggestions on avenues for future research including utilizing TDA to analyze cancer time-series data such as gene expression changes during pathogenesis, investigation of the relation between angiogenic vessel structure and treatment efficacy from imaging data, and experimental confirmation that geometric and topological connectivity implies functional connectivity in the context of cancer.


2018 ◽  
Author(s):  
Esther Ibanez-Marcelo ◽  
Lisa Campioni ◽  
Diego Manzoni ◽  
Enrica L Santarcangelo ◽  
Giovanni Petri

The aim of the study was to assess the EEG correlates of head positions, which have never been studied in humans, in participants with different psychophysiological characteristics, as encoded by their hypnotizability scores. This choice is motivated by earlier studies suggesting different processing of the vestibular/neck proprioceptive information in subjects with high (highs) and low (lows) hypnotizability scores maintaining their head rotated toward one side (RH). We analysed EEG signals recorded in 20 highs and 19 lows in basal conditions (head forward) and during RH, using spectral analysis, which captures changes localized to specific recording sites, and Topological Data Analysis (TDA), which instead describes large-scale differences in processing and representing sensorimotor information. Spectral analysis revealed significant differences related to the head position for alpha1, beta2, beta3, gamma bands, but not to hypnotizability. TDA instead revealed global hypnotizability-related differences in the strengths of the correlations among recording sites during RH. Significant changes were observed in lows on the left parieto-occipital side and in highs in right fronto-parietal region. Significant differences between the two groups were found in the occipital region, where changes were larger in lows than in highs. The study reports findings of the EEG correlates of the head posture for the first time, indicates that hypnotizability modulates its representation/processing on large-scale and that spectral and topological data analysis provide complementary results.


2021 ◽  
Vol 1897 (1) ◽  
pp. 012006
Author(s):  
Ahmed K. Al-Jaberi ◽  
Ehsan M. Hameed

2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Maria-Veronica Ciocanel ◽  
Riley Juenemann ◽  
Adriana T. Dawes ◽  
Scott A. McKinley

AbstractIn developmental biology as well as in other biological systems, emerging structure and organization can be captured using time-series data of protein locations. In analyzing this time-dependent data, it is a common challenge not only to determine whether topological features emerge, but also to identify the timing of their formation. For instance, in most cells, actin filaments interact with myosin motor proteins and organize into polymer networks and higher-order structures. Ring channels are examples of such structures that maintain constant diameters over time and play key roles in processes such as cell division, development, and wound healing. Given the limitations in studying interactions of actin with myosin in vivo, we generate time-series data of protein polymer interactions in cells using complex agent-based models. Since the data has a filamentous structure, we propose sampling along the actin filaments and analyzing the topological structure of the resulting point cloud at each time. Building on existing tools from persistent homology, we develop a topological data analysis (TDA) method that assesses effective ring generation in this dynamic data. This method connects topological features through time in a path that corresponds to emergence of organization in the data. In this work, we also propose methods for assessing whether the topological features of interest are significant and thus whether they contribute to the formation of an emerging hole (ring channel) in the simulated protein interactions. In particular, we use the MEDYAN simulation platform to show that this technique can distinguish between the actin cytoskeleton organization resulting from distinct motor protein binding parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Scott Broderick ◽  
Ruhil Dongol ◽  
Tianmu Zhang ◽  
Krishna Rajan

AbstractThis paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological connectivity of input crystal chemistry descriptors on defining similarity between different stoichiometries of apatites. It is shown that TDA automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number of discrete coordination polyhedra that constitute the structural building units common among the compounds. This information is presented in the form of a visualization scheme of a barcode of homology classifications, where the persistence of similarity between compounds is tracked. Unlike traditional perspectives of structure maps, this new “Materials Barcode” schema serves as an automated exploratory machine learning tool that can uncover structural associations from crystal chemistry databases, as well as to achieve a more nuanced insight into what defines similarity among homologous compounds.


CHANCE ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 59-64
Author(s):  
Nicole Lazar ◽  
Hyunnam Ryu

Sign in / Sign up

Export Citation Format

Share Document