scholarly journals Robot-Assisted Therapy Influence on Kinematic and EMG Activity in the Upper Limb for Children with Cerebral Palsy

Author(s):  
Sana Raouafi ◽  
Maxime Raison ◽  
Sofiane Achiche

Aim: To develop an index for quantitative assessment of the upper limb motor function in children with cerebral palsy before and after robot-assisted therapy. Method: An upper limb motor function index was developed using kinematic, surface electromyography and three-axis inertial measurements unit data collected from 15 children with cerebral palsy (CP) and 15 typically developed children. Children with CP underwent 18 robot-assisted therapy sessions with the REAplan device. All children were evaluated, using kinematic data from the REAplan, electromyography and three-axis inertial measurements unit readings from its accelerometer. A principal component analysis was conducted to produce an evaluation index, which is able to detect the deviation from the upper limb motor function of typically developing children group. Children with CP were evaluated twice before and after the intervention with Box and Blocks test and Finger-To-Nose test. The discriminative and concurrent validity of the upper limb motor function index were investigated. Results: The upper limb motor function index was higher in children with CP post therapy (p<0.001). Finger-To-Nose test values improved after robot-assisted therapy (p<0.03). A weak but positive correlation was observed between upper limb motor function index and clinical tests (r=0.012, p=0.95 and r=0.13, p= 0.54 for Box and Blocks test and Finger-To-Nose test respectively). Interpretation: The upper limb motor function index successfully differentiated between the typically developing children and children with CP and was effective in assessing the improvement of the upper limb motor function after robot-assisted therapy. The upper limb motor function index could be extended to assess and monitor rehabilitation therapies of other populations, such as those with stroke and Parkinson’s disease.

2020 ◽  
Vol 9 ◽  
pp. 117957272097901
Author(s):  
Stephan CD Dobri ◽  
Hana M Ready ◽  
Theresa Claire Davies

Background: Robotic devices have been used to quantify function, identify impairment, and rehabilitate motor function extensively in adults, but less-so in younger populations. The ability to perform motor actions improves as children grow. It is important to quantify this rate of change of the neurotypical population before attempting to identify impairment and target rehabilitation techniques. Objectives: For a population of typically developing children, this systematic review identifies and analyzes tools and techniques used with robotic devices to quantify upper-limb motor function. Since most of the papers also used robotic devices to compare function of neurotypical to pathological populations, a secondary objective was introduced to relate clinical outcome measures to identified robotic tools and techniques. Methods: Five databases were searched between February 2019 and August 2020, and 226 articles were found, 19 of which are included in the review. Results: Robotic devices, tasks, outcome measures, and clinical assessments were not consistent among studies from different settings but were consistent within laboratory groups. Fifteen of the 19 articles evaluated both typically developing and pathological populations. Conclusion: To optimize universally comparable outcomes in future work, it is recommended that a standard set of tasks and measures is used to assess upper-limb motor function. Standardized tasks and measures will facilitate effective rehabilitation.


2021 ◽  
Vol 11 (23) ◽  
pp. 11140
Author(s):  
Yun-Huei Ju ◽  
Rong-Ju Cherng

Background: Children with cerebral palsy (CP) have difficulty in managing postural control during functional reaching tasks, although children with different postural control ability are able to come up with different motor solutions to cope with different task demands. This study examined the effect of task constraint on postural control performance in children with cerebral palsy and typical development (TD) in terms of different postural control abilities. Methods: A cross-sectional research design was used. Twelve children with spastic diplegic cerebral palsy (mean age: 107.8 months) and 16 typically developing children (mean age: 110.9 months) participated in this study. Individually, all subjects were seated in a height-adjusted chair and were requested to reach for target(s) located at three different directions (medial, anterior, and lateral). A six-camera Qualisys Motion Capture System was used to capture motion data. Kinematic data in terms of body alignment and angular changes were analyzed. Results: Children with cerebral palsy demonstrated different postural control strategies to complete different reaching tasks compared to typically developing children by preparing postural alignment in advance, coordinating different body orientation movements during reaching after showing difficulty in managing reach medially. Conclusions: Children with cerebral palsy perceive their insufficient ability and prepare their alignment in advance to adapt to the task demanded and decrease the postural challenges of the task. Even though children with cerebral palsy self-generate different motor solutions to reach without falling, these alternative strategies might not be the most efficient adaptation.


2018 ◽  
Vol 72 (1) ◽  
pp. 41 ◽  
Author(s):  
Mahyar Salavati ◽  
Roshanak Vameghi ◽  
Seyed Hosseini ◽  
Ahmad Saeedi ◽  
Masoud Gharib

2020 ◽  
Vol 10 (11) ◽  
pp. 801
Author(s):  
Li Hua Jin ◽  
Shin-seung Yang ◽  
Ja Young Choi ◽  
Min Kyun Sohn

Purpose: The effectiveness of robot-assisted gait training (RAGT) in children with cerebral palsy (CP), especially in terms of improving the performance of daily activities, remains unclear. Therefore, we aimed to investigate the effectiveness of RAGT in children with CP. Methods: In this single-center, single-blinded, randomized cross-over trial, we enrolled 20 children with CP with Gross Motor Function Classification System (GMFCS) levels II–IV (13 males; age range, 6.75 ± 2.15 years). The participants were randomized into the RAGT/standard care (SC) (n = 10) and SC/RAGT/SC sequence groups (n = 10). Using a Walkbot-K system, the RAGT program comprised 3 × 30-min sessions/week for 6 weeks with a continued SC program. The SC program comprised 2–4 conventional physiotherapy sessions/week for 6 weeks. The Gross Motor Function Measure-88 (GMFM-88), the pediatric functional independence measure (WeeFIM), and the Canadian occupational performance measure (COPM) scores were assessed pre- and post-RAGT or SC periods and treatment, period, follow-up, and carry-over effects were analyzed. Energy expenditure and body composition were measured pre- and post-RAGT. Results: Significant treatment effects were observed in dimensions D and E of the GMFM (D: p = 0.018; E: p = 0.021) scores, WeeFIM mobility subtotal (p = 0.007), and COPM performance (p < 0.001) and satisfaction (p = 0.001) measure scores. The period, follow-up, and carry-over effects were not statistically significant. The gross energy cost significantly decreased (p = 0.041) and the skeletal muscle mass increased (p = 0.014) at post-RAGT assessment. The factors associated with functional outcomes showed significant improvements in the GMFM D scores and were mainly observed in children with GMFCS levels II–III compared to those classified at level IV (p = 0.038). Conclusion: RAGT had training benefits for children with CP. Specifically, it improved locomotor function and functional capability for daily activities. These effects were better in ambulatory children with CP. However, as SC interventions continued during the RAGT period, these improvements may be also related to multiple treatment effects.


Sign in / Sign up

Export Citation Format

Share Document