scholarly journals Gravity, Entanglement and Spin Possible Timeless State of the Universe

Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance in this timeless state. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. The experimental evidence of timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement. Therefore, the spin of quantum particle can be originated from geometrical or gravitational red-shift. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.

Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also the relation between every mass measured and the black hole entropy which introduce information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particle can be understood as a relative gravitational red-shift. Therefore the spin quantum number is understood as a quantum gravity measurement in local inertial frames. We introduce also guidance that leads to the least computations of gravitational measurement which is achieved when the ratio equal to the difference.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the internal spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We found that uncertainty is reduced as the measurements happens closely to the gravitational source. Least computations of gravitational measurement is achieved when the relative gravitational red-shift is equal to the difference in gravitational red-shift.


Author(s):  
Ahmed Farag Ali

We study the localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. The experimental evidence of the timeless state of the universe is the quantum entanglement and internal symmetries that are independent of time. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles is correlated with the relative gravitational red-shift at two different points. The same can be applied to all types of internal symmetries that are independent of time. Therefore gravity represents all measurements independent of time including quantum entanglement. We conclude that the gravity is the global $SU(3)\times SU(2)\times U(1)$ symmetry that produces gauge fields such as Electromagnetism, weak and strong nuclear force through localization with their internal symmetries correlated with the varying of relative gravitational red-shift . We also introduce a gravitational or geometric interpretation of spin-0, spin-1 and spin-1/2 states. We answered the question why do we measure matter and not anti-matter. We Introduce a solution for the Cosmological Constant Problem Value.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. We find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We conjecture that the universe emerges from a black hole that has global symmetry of $SU(3)\times SU(2)\times U(1)$. We introduce a geometric realization of spontaneous symmetry breaking in the timeless state of the universe and emergence of mass.


2015 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Anna C.M. Backerra

<p class="1Body">Small-scale physics called quantum mechanics, is still incompatible with large-scale physics as developed by Einstein in his general relativity theory. By using twin physics, which is a dualistic way of considering the universe, and following Einstein’s later advice it is possible to create a bridge between these extremes. The formulation is carried out using complementary language in which time and space necessarily occur as two distinct qualities, although they are treated analogously. The basic item in the theory is the Heisenberg unit, which has a constant amount of potential energy, and which is supplied with mathematical attributes; by interaction with another Heisenberg unit, these attributes are transformed into physical qualities. With this theory, a photon can be described such that its velocity is constant without using the related postulate, showing how the speed of light is the link between small- and large-scale physics. The Planck constant emerges from the explanation. The photon is accompanied by a so-called anti-photon, being a charged, massless particle, traveling with the same velocity and exchanging electromagnetic energy.</p>


Author(s):  
Ahmed Farag Ali

In this paper, we investigate how Rindler observer measures the universe in the ADM formalism. We compute his measurements in each slice of the space-time in terms of gravitational red-shift which is a property of general covariance. In this way, we found special relativity preferred frames to match with the general relativity Rindler frame in ADM formalism. This may resolve the widely known incompatibility between special relativity and general relativity on how each theory sees the red-shift. We found a geometric interpretation of the speed of light and mass.


2021 ◽  
Author(s):  
Vinicius Ritzmann

Abstract In Quantum Mechanics, two particles are entangled if their physical states depend on one another's so that if we find one of them in state A, for example, we will be sure that the other is in state B. However, until the state of a quantum particle is measured, it will be in a superposition of states, being in neither one nor the other until then, so when an entangled particle is measured, its pair also assumes a state instantly and regardless of how far away it is from the other particle at that time. As promising as it could be to use this fact for instantaneous communication, Quantum Mechanics seems to claim this is impossible, as no method ever invented to do this has worked until today. What we demonstrate here theoretically is that with a protocol and simple optical devices, two people who share polarized entangled pairs of photons can send information to each other faster than light. If this model of communication proves to be experimentally functional, we will have a contradiction to Einstein's theories of relativity, and otherwise, we will have Quantum Mechanics predicting something that does not happen in real life. This result, therefore, shows there is something fundamental about the universe we do not know yet. One of these theories must be mistaken and both deal with fundamental aspects of reality, such as the dynamics of space and time, and the particles that almost all matter around us are made of. Besides, this result is of great relevance also because it has immediate applications in several areas if the model works experimentally, as in space exploration and security, since it will allow the creation of non-interceptable instantaneous communication technologies.


2018 ◽  
Vol 33 (18) ◽  
pp. 1850105
Author(s):  
J. T. Wang ◽  
J. D. Fan

It is well known that an electron has either spin-up or spin-down state and a photon has two possible polarizations called spin [Formula: see text] or spin [Formula: see text]. But when two particles are created, the two particles can have 50% of one state and 50% in the other. This is called the two particles in quantum entanglement. The spooky thing is that an event at one point in the universe can instantaneously affect the event that is arbitrarily far away between these two particles. a The entanglement of the two particles can be electron or photon. We believe, in order to study this phenomenon we have to study further than the previously established principles of quantum mechanics, that is, to study how an electron creates a photon and how it interacts with the photon emitted. a Quantum entanglement simplified-video results — Quantum entanglement and spooky action at a distance, youtube.com, two years ago.


2011 ◽  
pp. 160-194

This chapter presents the theory of bipolar relativity–a central theme of this book. The concepts of YinYang bipolar agents, bipolar adaptivity, bipolar causality, bipolar strings, bipolar geometry, and bipolar relativity are logically defined. The unifying property of bipolar relativity is examined. Space and time emergence from YinYang bipolar geometry is proposed. Bipolar relativity provides a number of predictions. Some of them are domain dependent and some are domain independent. In particular, it is conjectured that spacetime relativity, singularity, gravitation, electromagnetism, quantum mechanics, bioinformatics, neurodynamics, and socioeconomics are different phenomena of YinYang bipolar relativity; microscopic and macroscopic agent interactions in physics, socioeconomics, and life science are directly or indirectly caused by bipolar causality and regulated by bipolar relativity; all physical, social, mental, and biological action-reaction forces are fundamentally different forms of bipolar quantum entanglement in large or small scales; gravity is not necessarily limited by the speed of light; graviton does not necessarily exist.


Sign in / Sign up

Export Citation Format

Share Document