scholarly journals Gravity as An Explanation of Spin Measurement in Quantum Entanglement: Possible Timeless State of the Universe

Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particle can be understood as a relative gravitational red-shift. Therefore the spin quantum number is understood as a quantum gravity measurement in local inertial frames. We introduce also guidance that leads to the least computations of gravitational measurement which is achieved when the ratio equal to the difference.

Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance in this timeless state. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. The experimental evidence of timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement. Therefore, the spin of quantum particle can be originated from geometrical or gravitational red-shift. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the internal spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We found that uncertainty is reduced as the measurements happens closely to the gravitational source. Least computations of gravitational measurement is achieved when the relative gravitational red-shift is equal to the difference in gravitational red-shift.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. We find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We conjecture that the universe emerges from a black hole that has global symmetry of $SU(3)\times SU(2)\times U(1)$. We introduce a geometric realization of spontaneous symmetry breaking in the timeless state of the universe and emergence of mass.


Author(s):  
Ahmed Farag Ali

We study the localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. The experimental evidence of the timeless state of the universe is the quantum entanglement and internal symmetries that are independent of time. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles is correlated with the relative gravitational red-shift at two different points. The same can be applied to all types of internal symmetries that are independent of time. Therefore gravity represents all measurements independent of time including quantum entanglement. We conclude that the gravity is the global $SU(3)\times SU(2)\times U(1)$ symmetry that produces gauge fields such as Electromagnetism, weak and strong nuclear force through localization with their internal symmetries correlated with the varying of relative gravitational red-shift . We also introduce a gravitational or geometric interpretation of spin-0, spin-1 and spin-1/2 states. We answered the question why do we measure matter and not anti-matter. We Introduce a solution for the Cosmological Constant Problem Value.


Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also the relation between every mass measured and the black hole entropy which introduce information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.


Author(s):  
Ahmed Farag Ali

We study a localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity is done through defining relative gravitational red-shift. This lead to an emergence of a timeless state in a mathematically consistent way. In this timeless state of gravity, we find a geometric interpretation of the speed of light and mass. The experimental support of the timeless state is the quantum entanglement and internal symmetries that are independent of time. Therefore gravity would be responsible for measurements independent of time including quantum entanglement. Based on the Gravity/Gauge equivalence in the timeless state, we conjecture that the universe emerged from a black hole with a global $SU(3)\times SU(2)\times U(1)$ symmetry on its event horizon that produces gauge fields Electromagnetism, weak and strong nuclear force through localization of this global symmetry. Through the localization in the gravity field, the timeless measurements such as spin will be correlated with the varying of timeless measurement which is relative gravitational red-shift. We present a gravitational or geometric interpretation of spin-0, spin-1, and spin-1/2 states. We present an interpretation of why do we measure matter rather than anti-matter. We found that the Higgs scalar field is represented by the gravitational red-shift at every point in the space around the black hole. We derive the numerical value of the cosmological constant that agrees with experimental observations.


2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


1988 ◽  
Vol 66 (8) ◽  
pp. 1931-1935
Author(s):  
Hisashi Ueda ◽  
Masahiro Kaise

n-Butyl orthotitanate, BT, polymerized in tetrahydrofuran, if irradiated by visible light, gives a new electron spin resonance absorption that is not found before irradiation. In the present work, three different polymers of BT were synthesized by adding tetramethyl phenylenediamine (TMPD), dimethyl phenylenediamine (DMPD), or phenylenediamine (PD), to the solution of BT. The polymers thus prepared were tested to see if they give a new esr signal when irradiated by visible light. The polymer to which 1 mol% of TMPD was added gave TMPD•+ when irradiated by visible light, but the TMPD•+ signal decayed after the irradiation was discontinued. This change, therefore, is reversible. The resonant position of every hyperfine splitting line of the TMPD•+ found in this polymer coincided with that of TMPD•+ in solution, but the relative intensity ratios and the line width of each line depended on the nuclear spin quantum number of the coupling nuclei. This can be interpreted by the restricted rotational motion of TMPD•+ in the polymer matrix. The contribution of the non-diagonal term to the spin relaxation time would explain this phenomenon. In the case of the polymer to which DMPD was added, a small amount of DMPD•+ seemed to be formed, but no radical was detected in the case of the polymer to which PD was added.


2011 ◽  
Vol 20 (06) ◽  
pp. 1167-1169 ◽  
Author(s):  
D. L. KHOKHLOV

The results of the angular size test in the paper under comment are at variance with those for compact radio sources. The possible reason for the difference between the two results is discussed.


Traditio ◽  
2012 ◽  
Vol 67 ◽  
pp. 235-276
Author(s):  
Barbara Obrist

TheLiber de orbe, attributed to Māshā'allāh (fl. 762–ca. 815) in the list of Gerard of Cremona's translations, stands out as one of the few identifiable sources for the indirect knowledge of Peripatetic physics and cosmology at the very time Aristotle's works on natural philosophy themselves were translated into Latin, from the 1130s onward. This physics is expounded in an opening series of chapters on the bodily constitution of the universe, while the central section of the treatise covers astronomical subjects, and the remaining parts deal with meteorology and the vegetal realm. Assuming that Gerard of Cremona's translation of theLiber de orbecorresponds to the twenty-seven chapter version that circulated especially during the thirteenth and fourteenth centuries, it was, however, not this version, but a forty-chapter expansion thereof that became influential as early as the 1140s. It may have originated in Spain, as indicated, among others, by a reference to the difference of visibility of a lunar eclipse between Spain and Mecca. Unlike the twenty-seven chapterLiber de orbe, this expanded and also partly modified text remains in manuscript, and none of the three copies known so far gives a title or mentions Māshā'allāh as an author. Instead, the thirteenth-century witness that is now in New York attributes the work to an Alcantarus:Explicit liber Alcantari Caldeorum philosophi. While no Arabic original of the twenty-seven chapterLiber de orbehas come to light yet, Taro Mimura of the University of Manchester recently identified a manuscript that partly corresponds to the forty-chapter Latin text, as well as a shorter version thereof.


Sign in / Sign up

Export Citation Format

Share Document