scholarly journals Gravity as the Hidden Variable of Quantum Mechanics: Information-Matter Equation from Gravity

Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also the relation between every mass measured and the black hole entropy which introduce information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.

Author(s):  
Ahmed Farag Ali

I localize gravity to match its measurements with the local inertial frame of special relativity. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces information-matter equation from gravity. Through localization of gravity, a timeless state of the universe emerges and the uncertainty principle does not hold since the velocity concept is replaced by distance in this timeless state. This would resolve the problem of time because timeless state of the universe emerges naturally and mathematically consistent. This would suggest that gravity form the hidden one variable of quantum mechanics which would complete the relation between quantum mechanics and gravity. The experimental evidence of timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement. Therefore, the spin of quantum particle can be originated from geometrical or gravitational red-shift. We introduce also a principle of least computation which is achieved when the ratio equal to the difference in the process of local gravitational measurements.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the internal spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We found that uncertainty is reduced as the measurements happens closely to the gravitational source. Least computations of gravitational measurement is achieved when the relative gravitational red-shift is equal to the difference in gravitational red-shift.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. I find a geometric interpretation of the speed of light and mass. I find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particle can be understood as a relative gravitational red-shift. Therefore the spin quantum number is understood as a quantum gravity measurement in local inertial frames. We introduce also guidance that leads to the least computations of gravitational measurement which is achieved when the ratio equal to the difference.


Accurate experiments have shown that the local inertial frame is the one with respect to which the distant parts of the universe are non-rotating. This coincidence, first noticed by Newton, later led to the formulation of Mach’s principle. It is known that relativity theory by itself cannot explain this coincidence. The introduction of a scalar ‘creation field’ into the theory is likely to improve the situation. Calculation shows that the continuous creation of matter has the effect of smoothing out any irregularities in the universe as it expands, while rotation, if present, becomes less and less. This explains the observed remarkable degree of homogeneity and isotropy in the universe.


2016 ◽  
Vol 8 (3) ◽  
pp. 111
Author(s):  
Dirk J. Pons ◽  
Arion D. Pons ◽  
Aiden J. Pons

<p class="1Body"><strong>Problem</strong>- The theory of Relativity is premised on the constancy of the speed of light (c) in-vacuo. While no empirical evidence convincingly shows the speed to be variable, nonetheless from a theoretical perspective the invariance is an assumption. <strong>Need-</strong> It is possible that the evidence could be explained by a different theory. <strong>Approach</strong>- A non-local hidden-variable (NLHV) solution, the Cordus particule theory, is applied to identify the causes of variability in the fabric density, and then show how this affects the speed of light. <strong>Findings</strong>- Under these assumptions the speed of light is variable (VSL), being inversely proportional to fabric density. This is because the discrete fields of the photon interact dynamically with the fabric and therefore consume frequency cycles of the photon. The fabric arises from aggregation of fields from particles, which in turn depends on the proximity and spatial distribution of matter. Results disfavour the universal applicability of the cosmological principle of homogeneity and isotropy of the universe. <strong>Originality</strong>- The work proposes causal mechanisms for VSL, which have otherwise been challenging to ascertain. Uniquely, this theory identifies fabric density as the dependent variable. In contrast, other VSL models propose that c varies with time or some geometric-like scale, but struggle to provide plausible reasons for that dependency. This theory also offers a conceptually simply way to reconcile the refraction of light in both gravitational situations and optical materials.</p>


2015 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Anna C.M. Backerra

<p class="1Body">Small-scale physics called quantum mechanics, is still incompatible with large-scale physics as developed by Einstein in his general relativity theory. By using twin physics, which is a dualistic way of considering the universe, and following Einstein’s later advice it is possible to create a bridge between these extremes. The formulation is carried out using complementary language in which time and space necessarily occur as two distinct qualities, although they are treated analogously. The basic item in the theory is the Heisenberg unit, which has a constant amount of potential energy, and which is supplied with mathematical attributes; by interaction with another Heisenberg unit, these attributes are transformed into physical qualities. With this theory, a photon can be described such that its velocity is constant without using the related postulate, showing how the speed of light is the link between small- and large-scale physics. The Planck constant emerges from the explanation. The photon is accompanied by a so-called anti-photon, being a charged, massless particle, traveling with the same velocity and exchanging electromagnetic energy.</p>


Author(s):  
Ahmed Farag Ali

We study the localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. The experimental evidence of the timeless state of the universe is the quantum entanglement and internal symmetries that are independent of time. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles is correlated with the relative gravitational red-shift at two different points. The same can be applied to all types of internal symmetries that are independent of time. Therefore gravity represents all measurements independent of time including quantum entanglement. We conclude that the gravity is the global $SU(3)\times SU(2)\times U(1)$ symmetry that produces gauge fields such as Electromagnetism, weak and strong nuclear force through localization with their internal symmetries correlated with the varying of relative gravitational red-shift . We also introduce a gravitational or geometric interpretation of spin-0, spin-1 and spin-1/2 states. We answered the question why do we measure matter and not anti-matter. We Introduce a solution for the Cosmological Constant Problem Value.


Author(s):  
Ahmed Farag Ali

In this paper, we investigate how Rindler observer measures the universe in the ADM formalism. We compute his measurements in each slice of the space-time in terms of gravitational red-shift which is a property of general covariance. In this way, we found special relativity preferred frames to match with the general relativity Rindler frame in ADM formalism. This may resolve the widely known incompatibility between special relativity and general relativity on how each theory sees the red-shift. We found a geometric interpretation of the speed of light and mass.


Author(s):  
Ahmed Farag Ali

We investigate the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. We find also a relation between every mass measured and the black hole entropy which introduces an information-matter equation from gravity. The experimental evidence of the timeless state of the universe is the quantum entanglement. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles can be understood as a relative gravitational red-shift at two different points. Therefore the spin measurements introduce the quantum gravity measurements in local inertial frames. We conjecture that the universe emerges from a black hole that has global symmetry of $SU(3)\times SU(2)\times U(1)$. We introduce a geometric realization of spontaneous symmetry breaking in the timeless state of the universe and emergence of mass.


2014 ◽  
Vol 79 (1) ◽  
pp. 8-20 ◽  
Author(s):  
Ignacio Silva

In the first part of this paper I argue that even if at first Alvin Plantinga’s reasons for allowing special divine action seem similar to those of Thomas Aquinas, particularly in De Potentia Dei for allowing miracles, the difference in their metaphysical language makes Aquinas’ account less prone to the objections raised against Plantinga’s. In the second part I argue that Plantinga errs when recurring to quantum mechanics for allowing special divine action, making God to be a cause among causes. Thomas Aquinas, by speaking of primary and secondary causality when referring to God’s activity, avoids taking this step, evading the conclusion that God could be seen as a cause among causes. Aquinas, however, maintains in a statement which goes beyond Plantinga’s, that God’s providence requires the universe to be indeterministic because this indeterministic feature makes the universe more perfect.


Sign in / Sign up

Export Citation Format

Share Document