scholarly journals The Effects of Inertial Forces on the Dynamics of Disk Galaxies

Author(s):  
Tomer Zimmerman ◽  
Roy Gomel

When dealing with galactic dynamics, or more specifically, with galactic rotation curves, one basic assumption is always taken: the frame of reference relative to which the rotational velocities are given is assumed to be inertial. In other words, fictitious forces are assumed to vanish relative to the observational frame of a given galaxy. It might be interesting, however, to explore the outcomes of dropping that assumption; that is, to search for signatures of non-inertial behavior in the observed data. In this work, we show that the very discrepancy in galaxy rotation curves could be attributed to non-inertial effects. We derive a model for spiral galaxies that takes into account the possible influence of fictitious forces and find that the additional terms in the new model, due to fictitious forces, closely resemble dark halo profiles. Following this result, we apply the new model to a wide sample of galaxies, spanning a large range of luminosities and radii. It turns out that the new model accurately reproduces the structures of the rotation curves and provides very good fittings to the data.

Author(s):  
Tomer Zimmerman ◽  
Roy Gomel

When dealing with galactic dynamics, or more specifically, with galactic rotation curves, one basic assumption is always taken: the frame of reference relative to which the rotational velocities are given is assumed to be inertial. In other words, fictitious forces are assumed to vanish relative to the observational frame of a given galaxy. It might be interesting, however, to explore the outcomes of dropping that assumption; that is, to search for signatures of non-inertial behavior in the observed data. In this work, we show that the very discrepancy in galaxy rotation curves could be attributed to non-inertial effects. We derive a model for spiral galaxies that takes into account the possible influence of fictitious forces and find that the additional terms in the new model, due to fictitious forces, closely resemble dark halo profiles. Following this result, we apply the new model to a wide sample of galaxies, spanning a large range of luminosities and radii. It turns out that the new model accurately reproduces the structures of the rotation curves and provides very good fittings to the data.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
Roy Gomel ◽  
Tomer Zimmerman

When dealing with galactic dynamics, or more specifically, with galactic rotation curves, one basic assumption is always taken: the frame of reference relative to which the rotational velocities are given is assumed to be inertial. In other words, fictitious forces are assumed to vanish relative to the observational frame of a given galaxy. It might be interesting, however, to explore the outcomes of dropping that assumption; that is, to search for signatures of non-inertial behavior in the observed data. In this work, we show that the very discrepancy in galaxy rotation curves could be attributed to non-inertial effects. We derive a model for spiral galaxies that takes into account the possible influence of fictitious forces and find that the additional terms in the new model, due to fictitious forces, closely resemble dark halo profiles. Following this result, we apply the new model to a wide sample of galaxies, spanning a large range of luminosities and radii. It turns out that the new model accurately reproduces the structures of the rotation curves and provides very good fittings to the data.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Christian G. Böhmer ◽  
Nicola Tamanini ◽  
Matthew Wright

We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we are able to recover the Navarro–Frenk–White profile of dark matter halos by a suitable identification of constants. We consider the Burkert profile in the context of our model and also discuss rotation curves more generally.


1987 ◽  
Vol 117 ◽  
pp. 119-132 ◽  
Author(s):  
K. C. Freeman

What are the characteristic scale lengths and densities for the dark halos of galaxies, and the typical ratios of dark to luminous mass? For elliptical galaxies, the best estimates come from X-ray data which will be discussed in a later session. For spirals, the best estimates come from rotation curves. I will concentrate on the halo parameters for disk galaxies. At the end, there will be a few comments on stellar dynamical data for ellipticals, and on the unique information available for the dark halo of our Galaxy.


Author(s):  
Roy Gomel ◽  
Tomer Zimmerman

In this work we try a new approach for dealing with the discrepancy between observed galaxy rotation curves and theoretical predictions. This new approach does not involve any changes in the current fundamental laws of nature or the addition of dark halos. Rather, it is based on the following single assumption: the observed velocities presented in rotation curves are not given relative to the galaxies' local inertial frames. Another way of putting it down: fictitious forces, which arise in non-inertial frames, should be taken into account when constructing a theoretical rotation curve. It turns out that this single assumption is sufficient in order to establish a robust model for fitting rotation curves. Applying the new model on a sample of more than 30 galaxies provides very promising results.


2020 ◽  
Vol 494 (2) ◽  
pp. 2875-2885 ◽  
Author(s):  
Valerio Marra ◽  
Davi C Rodrigues ◽  
Álefe O F de Almeida

ABSTRACT The radial acceleration relation (RAR) shows a strong correlation between two accelerations associated with galaxy rotation curves. The relation between these accelerations is given by a non-linear function that depends on an acceleration scale a†. Some have interpreted this as an evidence for a gravity model, such as modified Newtonian dynamics (MOND), which posits a fundamental acceleration scale a0 common to all the galaxies. However, it was later shown, using Bayesian inference, that this seems not to be the case: the a0 credible intervals for individual galaxies were not found to be compatible among themselves. A test like the latter is a fundamental test for MOND as a theory for gravity, since it directly evaluates its basic assumption and this using the data that most favour MOND: galaxy rotation curves. Here we improve upon the previous analyses by introducing a more robust method to assess the compatibility between the credible intervals, in particular without Gaussian approximations. We directly estimate, using a Monte Carlo simulation, that the existence of a fundamental acceleration is incompatible with the data at more than 5σ. We also consider quality cuts in order to show that our results are robust against outliers. In conclusion, the new analysis further supports the claim that the acceleration scale found in the RAR is an emergent quantity.


Galaxies ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jean Alexandre ◽  
Martyna Kostacinska

2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


Sign in / Sign up

Export Citation Format

Share Document