scholarly journals Development and Mechanical Testing of Porous-Lightweight Geopolymer Mortar

Author(s):  
Ghulam Qadir ◽  
Yasir Rashid ◽  
Ahmad Hassan ◽  
Esmaou Mahmoud Vall ◽  
Shamsa Saleh ◽  
...  

In this study, a novel porous geopolymer mortar (GP) was produced and tested experimentally. Industrial waste materials/by-products were used as constituents of the GP, along with dune sand. One sample was produced as a control sample for benchmarking. For the rest of the samples, 15%, 30%, and 45% by volume, the solid constituents were replaced with expanded polystyrene foam (EPS) beads. These mortar samples were heat cured to depolymerize the EPS to cause porosity inside the samples. Indoor experiments were conducted to evaluate the response of produced porous GP to high heat flux. The porous samples were able to reduce heat transmission across the opposite surfaces. Induced porosity resulted in a decrement in compressive strength from 77.2 MPa for the control sample to 15.8 MPa for 45% porous sample. However, the limit lies within the standards for partitioning walls in buildings and pavements in urban areas to absorb rainwater.

Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Ghulam Qadir ◽  
Yasir Rashid ◽  
Ahmed Hassan ◽  
Esmaou Mahmoud Vall ◽  
Shamsa Saleh ◽  
...  

In this study, a novel porous geopolymer mortar (GP) was produced and tested experimentally. Industrial waste materials/by-products were used as constituents of the GP, along with dune sand. One sample was produced as a control sample for benchmarking. For the rest of the samples, 15%, 30%, and 45% by volume, the solid constituents were replaced with expanded polystyrene foam (EPS) beads. These mortar samples were heat cured to depolymerize the EPS to cause porosity inside the samples. Indoor experiments were conducted to evaluate the response of produced porous GP to high heat flux. The porous samples were able to reduce heat transmission across the opposite surfaces. Induced porosity resulted in a decrement in compressive strength from 77.2 MPa for the control sample to 15.8 MPa for 45% porous sample. However, the limit lies within the standards for partitioning walls in buildings and pavements in urban areas to absorb rainwater.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3131 ◽  
Author(s):  
Yasir Rashid ◽  
Fadi Alnaimat ◽  
Bobby Mathew

In this article, thermal performance of different waste materials and by-products of industrial processes is investigated experimentally. A geopolymer concrete block with 7.5 cm thickness and cross-sectional area of 5 × 5 cm was considered as a reference model to measure heat transmission across the two opposite surfaces while all four remnant surfaces were perfectly insulated. For all other samples, a sandwich concrete block was developed by taking two pieces of the geopolymer concrete with 2.5 cm thickness each on either side and insulation material of 2.5 cm thickness in between. The sandwich materials investigated were air cavity, expanded polystyrene foam, polyurethane foam, rubber tire, date palm, PCM-30, and PCM-42. Experimental investigations revealed that the investigated green materials and industrial by-products have comparable insulation performance with respect to the traditional insulations such as expanded polystyrene foam. It is found that polyurethane foam and date palm can reduce indoor cooling demand by 46.6% each in hot conditions while rubber tire can reduce indoor heating demand by 59.2% in cold climatic conditions at the maximum. The research results confirm and encourage the effective utilization of waste materials in building walls for reducing indoor air-conditioning demand in the extreme climatic conditions.


2017 ◽  
Author(s):  
Tomio Okawa ◽  
Junki Ohashi ◽  
Ryo Hirata ◽  
Koji Enoki

Author(s):  
Larissa Krambeck ◽  
Kelvin Guessi Domiciano ◽  
Luis Alonso Betancur Arboleda ◽  
Marcia Mantelli

Sign in / Sign up

Export Citation Format

Share Document