scholarly journals Biomimetic Mineralization on 3d Printed Pla Scaffolds: On the Response of Human Primary Osteoblasts Spheroids and in Vivo Implantation

Author(s):  
Marianna O. C. Maia-Pinto ◽  
Ana Carolina B. Brochado ◽  
Bruna Nunes Teixeira ◽  
Suelen C. Sartoretto ◽  
Marcelo J. Uzeda ◽  
...  

This study aimed to assess the response of 3D printed PLA scaffolds biomimetically coated with apatite on human primary osteoblast spheroids and evaluate the biological response to its association with Bone Morphogenetic Protein 2 (rhBMP-2) in rat calvaria. PLA scaffolds were produced via 3D printing, soaked in simulated body fluid (SBF) solution, and characterized by physical-chemical, morphological, and mechanical properties. The in vitro biological response was assessed with human primary osteoblast (HOb) spheroids. The in vivo analysis was conducted through the implantation of 3D printed PLA scaffolds either alone, covered by apatite (PLA-CaP) or PLA-CaP loaded with rhBMP-2 (PLA-CaP+rhBMP-2) on critical-sized defects (8 mm) of rat calvaria. Increased cell adhesion and in vitro release of growth factors (PDGF, bFGF, VEGF) was observed for PLA-CaP scaffolds when pre-treated with FBS. PLA-CaP+BMP2 presented higher values of newly formed bone (NFB) than other groups at all experimental periods (p<0.05), attaining 44.85% of NFB after 6 months. These findings indicate that functionalization of PLA scaffolds with biomimetic apatite can improve its biological properties in the presence of complex biological media. Its association with BMP2 may enhance bone repair, suggesting this strategy as a promising candidate for bone tissue engineering.

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Marianna O. C. Maia-Pinto ◽  
Ana Carolina B. Brochado ◽  
Bruna Nunes Teixeira ◽  
Suelen C. Sartoretto ◽  
Marcelo J. Uzeda ◽  
...  

This study aimed to assess the response of 3D printed polylactic acid (PLA) scaffolds biomimetically coated with apatite on human primary osteoblast (HOb) spheroids and evaluate the biological response to its association with Bone Morphogenetic Protein 2 (rhBMP-2) in rat calvaria. PLA scaffolds were produced via 3D printing, soaked in simulated body fluid (SBF) solution to promote apatite deposition, and characterized by physical-chemical, morphological, and mechanical properties. PLA-CaP scaffolds with interconnected porous and mechanical properties suitable for bone repairing were produced with reproducibility. The in vitro biological response was assessed with human primary osteoblast spheroids. Increased cell adhesion and the rise of in vitro release of growth factors (Platelet-Derived Growth Factor (PDGF), Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) was observed for PLA-CaP scaffolds, when pre-treated with fetal bovine serum (FBS). This pre-treatment with FBS was done in a way to enhance the adsorption of serum proteins, increasing the number of bioactive sites on the surface of scaffolds, and to partially mimic in vivo interactions. The in vivo analysis was conducted through the implantation of 3D printed PLA scaffolds either alone, coated with apatite (PLA-CaP) or PLA-CaP loaded with rhBMP-2 on critical-sized defects (8 mm) of rat calvaria. PLA-CaP+rhBMP2 presented higher values of newly formed bone (NFB) than other groups at all in vivo experimental periods (p < 0.05), attaining 44.85% of NFB after six months. These findings indicated two new potential candidates as alternatives to autogenous bone grafts for long-term treatment: (i) 3D-printed PLA-CaP scaffold associated with spheroids, since it can reduce the time of repair in situ by expression of biomolecules and growth factors; and (ii) 3D-printed PLA-CaP functionalized rhBMP2 scaffold, a biocompatible, bioactive biomaterial, with osteoconductivity and osteoinductivity.


2021 ◽  
Vol 23 (1) ◽  
pp. 283
Author(s):  
Christian Deininger ◽  
Andrea Wagner ◽  
Patrick Heimel ◽  
Elias Salzer ◽  
Xavier Monforte Vila ◽  
...  

The repair of large bone defects remains challenging and often requires graft material due to limited availability of autologous bone. In clinical settings, collagen sponges loaded with excessive amounts of bone morphogenetic protein 2 (rhBMP-2) are occasionally used for the treatment of bone non-unions, increasing the risk of adverse events. Therefore, strategies to reduce rhBMP-2 dosage are desirable. Silk scaffolds show great promise due to their favorable biocompatibility and their utility for various biofabrication methods. For this study, we generated silk scaffolds with axially aligned pores, which were subsequently treated with 10× simulated body fluid (SBF) to generate an apatitic calcium phosphate coating. Using a rat femoral critical sized defect model (CSD) we evaluated if the resulting scaffold allows the reduction of BMP-2 dosage to promote efficient bone repair by providing appropriate guidance cues. Highly porous, anisotropic silk scaffolds were produced, demonstrating good cytocompatibility in vitro and treatment with 10× SBF resulted in efficient surface coating. In vivo, the coated silk scaffolds loaded with a low dose of rhBMP-2 demonstrated significantly improved bone regeneration when compared to the unmineralized scaffold. Overall, our findings show that this simple and cost-efficient technique yields scaffolds that enhance rhBMP-2 mediated bone healing.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 365 ◽  
Author(s):  
Qing Min ◽  
Jiaoyan Liu ◽  
Xiaofeng Yu ◽  
Yuchen Zhang ◽  
Jiliang Wu ◽  
...  

Local administration of platelet-derived growth factor-BB (PGDF-BB) and bone morphogenetic protein-2 (BMP-2) in a sequential release manner could substantially promote bone healing. To achieve this goal, a delivery system that could sustain the release of PGDF-BB and BMP-2 by way of temporal separation was developed. One type of PGDF-BB-encapsulated alginate microsphere and another type of BMP-2-encapsulated microsphere with a core-shell structure were respectively produced using emulsification methods. These two types of microspheres were then embedded into chitosan/glycerophosphate hydrogel for constructing composite gels. Some of them were found to be injectable at ambient temperature and had thermo-sensitive features near physiological temperature and pH. The optimally formulated composite gels showed the ability to control the release of PGDF-BB and BMP-2 in a sequential fashion in which PDGF-BB was released earlier than BMP-2. In vitro release patterns indicated that the release rates could be significantly regulated by varying the embedded amount of the factor-encapsulated microspheres, which can in turn mediate the temporal separation release interval between PGDF-BB and BMP-2. The released PDGF-BB and BMP-2 were detected to be bioactive based on their respective effects on Balb/c 3T3 and C2C12 cells. These results suggest that the presently developed composite gels have the potential for bone repair by synergistically utilizing the early chemotactic effect of PDGF-BB and the subsequent osteogenic and angiogenic functions of PDGF-BB and BMP-2.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 118 ◽  
Author(s):  
Silvia Minardi ◽  
Joseph S. Fernandez-Moure ◽  
Dongmei Fan ◽  
Matthew B. Murphy ◽  
Iman K. Yazdi ◽  
...  

Bone morphogenetic protein-2 (BMP-2) has been demonstrated to be one of the most vital osteogenic factors for bone augmentation. However, its uncontrolled administration has been associated with catastrophic side effects, which compromised its clinical use. To overcome these limitations, we aimed at developing a safer controlled and sustained release of BMP-2, utilizing poly(lactic-co-glycolic acid)-multistage vector composite microspheres (PLGA-MSV). The loading and release of BMP-2 from PLGA-MSV and its osteogenic potential in vitro and in vivo was evaluated. BMP-2 in vitro release kinetics was assessed by ELISA assay. It was found that PLGA-MSV achieved a longer and sustained release of BMP-2. Cell cytotoxicity and differentiation were evaluated in vitro by MTT and alkaline phosphatase (ALP) activity assays, respectively, with rat mesenchymal stem cells. The MTT results confirmed that PLGA-MSVs were not toxic to cells. ALP test demonstrated that the bioactivity of BMP-2 released from the PLGA-MSV was preserved, as it allowed for the osteogenic differentiation of rat mesenchymal stem cells, in vitro. The biocompatible, biodegradable, and osteogenic PLGA-MSVs system could be an ideal candidate for the safe use of BMP-2 in orthopedic tissue engineering applications.


2020 ◽  
Vol 11 (6) ◽  
pp. 373-386
Author(s):  
Ishwor Poudel ◽  
Manjusha Annaji ◽  
Robert D Arnold ◽  
Amal Kaddoumi ◽  
Nima Shamsaei ◽  
...  

Aim: Additively manufactured (3D printed), stainless steel implants were coated with dexamethasone using gelatin, chondroitin sulfate for use in bone graft surgeries. Materials & methods: The drug and polymers were deposited on the implants with a rough surface using a high precision air brush. The gelatin-chondroitin sulfate layers were cross-linked using glutaraldehyde. Results: The drug content uniformity was within 100 ± 5%, and the thickness of the polymer layer was 410 ± 5.2 μm. The in vitro release studies showed a biphasic pattern with an initial burst release followed by slow release up to 3 days. Conclusion: These results are very promising as the slow release implants can be further tested in vivo in large animals, such as cattle and horses to prevent the inflammatory cascade following surgeries.


2021 ◽  
Author(s):  
Xiongcheng Xu ◽  
Long Xiao ◽  
Yanmei Xu ◽  
Jin Zhuo ◽  
Xue Yang ◽  
...  

Abstract Critical oral-maxillofacial bone defects, damaged by trauma and tumors, not only affect the physiological functions and mental health of patients but are also highly challenging to reconstruct. Personalized biomaterials customized by 3D printing technology have the potential to match oral-maxillofacial bone repair and regeneration requirements. Laponite nanosilicates have been added to biomaterials to achieve biofunctional modification owing to their excellent biocompatibility and bioactivity. Herein, porous nanosilicate-functionalized polycaprolactone (PCL/LAP) was fabricated by 3D printing technology, and its bioactivities in bone regeneration were investigated in vitro and in vivo. In vitro experiments demonstrated that PCL/LAP exhibited good cytocompatibility and enhanced the viability of BMSCs. PCL/LAP functioned to stimulate osteogenic differentiation of BMSCs at the mRNA and protein levels and elevated angiogenic gene expression and cytokine secretion. Moreover, BMSCs cultured on PCL/LAP promoted the angiogenesis potential of endothelial cells by angiogenic cytokine secretion. Then, PCL/LAP scaffolds were implanted into the calvarial defect model. Toxicological safety of PCL/LAP was confirmed, and significant enhancement of vascularized bone formation was observed. Taken together, 3D-printed PCL/LAP scaffolds with brilliant osteogenesis to enhance bone regeneration could be envisaged as an outstanding bone substitute for a promising change in oral-maxillofacial bone defect reconstruction.


Author(s):  
Yang Sun ◽  
Xing Zhang ◽  
Mingran Luo ◽  
Weifan Hu ◽  
Li Zheng ◽  
...  

Surface modification of three-dimensional (3D)-printed titanium (Ti) scaffolds with hydroxyapatite (HA) has been a research hotspot in biomedical engineering. However, unlike HA coatings on a plain surface, 3D-printed Ti scaffolds have inherent porous structures that influence the characteristics of HA coatings and osteointegration. In the present study, HA coatings were successfully fabricated on 3D-printed Ti scaffolds using plasma spray and electrochemical deposition, named plasma sprayed HA (PSHA) and electrochemically deposited HA (EDHA), respectively. Compared to EDHA scaffolds, HA coatings on PSHA scaffolds were smooth and continuous. In vitro cell studies confirmed that PSHA scaffolds have better potential to promote bone mesenchymal stem cell adhesion, proliferation, and osteogenic differentiation than EDHA scaffolds in the early and late stages. Moreover, in vivo studies showed that PSHA scaffolds were endowed with superior bone repair capacity. Although the EDHA technology is simpler and more controllable, its limitation due to the crystalline and HA structures needs to be improved in the future. Thus, we believe that plasma spray is a better choice for fabricating HA coatings on implanted scaffolds, which may become a promising method for treating bone defects.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 648 ◽  
Author(s):  
Patricia García-García ◽  
Ricardo Reyes ◽  
Elisabet Segredo-Morales ◽  
Edgar Pérez-Herrero ◽  
Araceli Delgado ◽  
...  

The controlled release of active substances—bone morphogenetic protein 2 (BMP-2) and 17β-estradiol—is one of the main aspects to be taken into account to successfully regenerate a tissue defect. In this study, BMP-2- and 17β-estradiol-loaded microspheres were combined in a sandwich-like system formed by a hydrogel core composed of chitosan (CHT) collagen, 2-hidroxipropil γ-ciclodextrin (HP-γ-CD), nanoparticles of hydroxyapatite (nano-HAP), and an electrospun mesh shell prepared with two external electrospinning films for the regeneration of a critical bone defect in osteoporotic rats. Microspheres were made with poly-lactide-co-glycolide (PLGA) to encapsulate BMP-2, whereas the different formulations of 17β-estradiol were prepared with poly-lactic acid (PLA) and PLGA. The in vitro and in vivo BMP-2 delivered from the system fitted a biphasic profile. Although the in vivo burst effect was higher than in vitro the second phases (lasted up to 6 weeks) were parallel, the release rate ranged between 55 and 70 ng/day. The in vitro release kinetics of the 17β-estradiol dissolved in the polymeric matrix of the microspheres depended on the partition coefficient. The 17β-estradiol was slowly released from the core system using an aqueous release medium (Deff = 5.58·10−16 ± 9.81·10−17m2s−1) and very fast in MeOH-water (50:50). The hydrogel core system was injectable, and approximately 83% of the loaded dose is uniformly discharged through a 20G needle. The system placed in the defect was easily adapted to the defect shape and after 12 weeks approximately 50% of the defect was refilled by new tissue. None differences were observed between the osteoporotic and non-osteoporotic groups. Despite the role of 17β-estradiol on the bone remodeling process, the obtained results in this study suggest that the observed regeneration was only due to the controlled rate released of BMP-2 from the PLGA microspheres.


2016 ◽  
Vol 2 (8) ◽  
pp. e1600188 ◽  
Author(s):  
Virginia Llopis-Hernández ◽  
Marco Cantini ◽  
Cristina González-García ◽  
Zhe A. Cheng ◽  
Jingli Yang ◽  
...  

Growth factors (GFs) are powerful signaling molecules with the potential to drive regenerative strategies, including bone repair and vascularization. However, GFs are typically delivered in soluble format at supraphysiological doses because of rapid clearance and limited therapeutic impact. These high doses have serious side effects and are expensive. Although it is well established that GF interactions with extracellular matrix proteins such as fibronectin control GF presentation and activity, a translation-ready approach to unlocking GF potential has not been realized. We demonstrate a simple, robust, and controlled material-based approach to enhance the activity of GFs during tissue healing. The underlying mechanism is based on spontaneous fibrillar organization of fibronectin driven by adsorption onto the polymer poly(ethyl acrylate). Fibrillar fibronectin on this polymer, but not a globular conformation obtained on control polymers, promotes synergistic presentation of integrin-binding sites and bound bone morphogenetic protein 2 (BMP-2), which enhances mesenchymal stem cell osteogenesis in vitro and drives full regeneration of a nonhealing bone defect in vivo at low GF concentrations. This simple and translatable technology could unlock the full regenerative potential of GF therapies while improving safety and cost-effectiveness.


1987 ◽  
Vol 57 (02) ◽  
pp. 201-204 ◽  
Author(s):  
P Y Scarabin ◽  
L Strain ◽  
C A Ludlam ◽  
J Jones ◽  
E M Kohner

SummaryDuring the collection of samples for plasma β-thromboglobulin (β-TG) determination, it is well established that artificially high values can be observed due to in-vitro release. To estimate the reliability of a single β-TG measurement, blood samples were collected simultaneously from both arms on two separate occasions in 56 diabetic patients selected for a clinical trial. From each arm, blood was taken into two tubes containing an anticoagulant mixture with (tube A) and without (tube B) PGE!. The overall mean value of B-TG in tube B was 1.14 times higher than in tube A (p <0.01). The markedly large between-arms variation accounted for the most part of within-subject variation in both tubes and was significantly greater in tube B than in tube A. Based on the difference between B-TG values from both arms, the number of subjects with artifically high B-TG values was significantly higher in tube B than in tube A on each occasion (overall rate: 28% and 14% respectively). Estimate of between-occasions variation showed that B-TG levels were relatively stable for each subject between two occasions in each tube. It is concluded that the use of PGEi decreases falsely high B-TG levels, but a single measurement of B-TG does not provide a reliable estimate of the true B-TG value in vivo.


Sign in / Sign up

Export Citation Format

Share Document