scholarly journals Algebraic Rules for the Percentage Composition of Oligomers in Genomes

Author(s):  
Sergey Petoukhov

The article presents the author's results of studying hidden rules of structural organizations of long DNA sequences in eukaryotic and prokaryotic genomes. The results concern some rules of percentages (or probabilities) of n-plets in genomes. To reveal such rules, the author uses a tensor family of matrix representations of interrelated DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, and 256 tetraplets. If percentages of each of these n-plets in tested genomic DNA-texts are disposed into appropriate cells of appropriate matrices, unexpected rules of invariance of total sums of their percentages in certain tetra-groupings of n-plets are revealed. The author connects the received results about these genomic percentages rules with a supposition of P. Jordan, who is one of the creators of quantum mechanics and quantum biology, that life's missing laws are the rules of chance and probability of the quantum world. Algebraic features of the genomic matrices of percentages of n-plets are analyzed and discussed. The received results can be used for further development of quantum biology.

Author(s):  
Sergey Petoukhov

The article presents the author's results of studying hidden rules of structural organizations of long DNA sequences in eukaryotic and prokaryotic genomes. The results concern some rules of percentages (or probabilities) of n-plets in genomes. To reveal such rules, the author considers genomic DNA nucleotide sequences as multilayers sequences of n-plets and studies the percentage contents of n-plets in different layers. Unexpected rules of invariance of total sums of percentages in certain tetra-groupings of n-plets in different layers of genomic DNA sequences are revealed. These discovered rules are candidates for the role of universal genomic rules. A tensor family of matrix representations of interrelated DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, and 256 tetraplets is used in the study. This matrix approach allows revealing algebraic properties of the mentioned genetic rules of probabilities, which are useful for developing algebraic and quantum biology. Some analogies of the discovered genetic phenomena with phenomena of Gestalt psychology are noted and discussed. The author connects the received results about the genomic percentages rules with a supposition of P. Jordan, who is one of the creators of quantum mechanics and quantum biology, that life's missing laws are the rules of chance and probability of the quantum world. Additional attention is paid to the algebraic features of the system of structured DNA alphabets and their relationship with the methods of algebraic holography, known in the technique of processing discrete signals. The concept of algebraic-holographic genetics is being developed for the understanding of inherited holographic properties of organisms.


Author(s):  
Sergey Petoukhov

The article presents the author's results of studying hidden rules of structural organizations of long DNA sequences in eukaryotic and prokaryotic genomes. The results concern some rules of percentages (or probabilities) of n-plets in genomes. To reveal such rules, the author considers genomic DNA nucleotide sequences as multilayers sequences of n-plets and studies the percentage contents of n-plets in different layers. Unexpected rules of invariance of total sums of percentages in certain tetra-groupings of n-plets in different layers of genomic DNA sequences are revealed. These discovered rules are candidates for the role of universal genomic rules. A tensor family of matrix representations of interrelated DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, and 256 tetraplets is used in the study. This matrix approach allows revealing algebraic properties of the mentioned genetic rules of probabilities, which are useful for developing algebraic and quantum biology. Some analogies of the discovered genetic phenomena with phenomena of Gestalt psychology are noted and discussed. The author connects the received results about the genomic percentages rules with a supposition of P. Jordan, who is one of the creators of quantum mechanics and quantum biology, that life's missing laws are the rules of chance and probability of the quantum world.


Author(s):  
Sergey V. Petoukhov

The article is devoted to the new results of the author, which add his previously published ones, of studying hidden rules and symmetries in structures of long single-stranded DNA sequences in eukaryotic and prokaryotic genomes. The author uses the existence of different alphabets of n-plets in DNA: the alphabet of 4 nucleotides, the alphabet of 16 douplets, the alphabet of 64 triplets, etc. Each of such DNA alphabets of n-plets can serve for constructing a text as a chain of these n-plets. Using this possibility, the author represents any long DNA nucleotide sequence as a bunch of many so-called n-texts, each of which is written on the basis of one of these alphabets of n-plets. Each of such n-texts has its individual percents of different n-plets in its genomic DNA. But it turns out that in such multi-alphabetical or multilayer presentation of each of many genomic DNA, analyzed by the author, universal rules of probabilities and symmetry exist in interrelations of its different n-texts regarding their percents of n-plets. In this study, the tensor product of matrices and vectors is used as an effective analytical tool borrowed from the arsenal of quantum mechanics. Some additions to the topic of algebra-holographic principles in genetics are also presented. Taking into account the described genomic rules of probability, the author puts also forward a concept of the important role of stochastic resonances in genetic informatics.


Author(s):  
Sergey V. Petoukhov

One of creators of quantum mechanics P. Jordan in his work on quantum biology claimed that life's missing laws were the rules of chance and probability of the quantum world. The article presents author’s results of studying probabilities of nucleotides on so-called epi-chains of long DNA sequences of various eukaryotic and prokaryotic genomes. DNA epi-chains are algorithmically constructed subsequencies of DNA nucleotide sequences. According to the algorithm of construction of any epi-chain of the order n, the epi-chain is such nucleotide subsequence, in which the numerations of adjacent nucleotides differ by n    (n = 2, 3, 4,…). Correspondingly each epi-chain of order n contains n times less nucleotides than the original DNA sequence. The presented results unexpectedly show that nucleotide probabilities on such DNA epi-chains of different orders are practically identical to nucleotide probabilities in the original long DNA sequence. These data allow considering DNA as a regular rich set of epi-chains, which can play a certain role in genetic and epigenetic phenomena as the author belives. Appropriate rules of nucleotide probabilities on epi-chains of long DNA sequences are formulated for further their tests on a wider set of biological genomes. These phenomenological data and their possible biological meaning are discussed.


Author(s):  
Kuldeepsingh A. Kalariya ◽  
Ram Prasnna Meena ◽  
Lipi Poojara ◽  
Deepa Shahi ◽  
Sandip Patel

Abstract Background Squalene synthase (SQS) is a rate-limiting enzyme necessary to produce pentacyclic triterpenes in plants. It is an important enzyme producing squalene molecules required to run steroidal and triterpenoid biosynthesis pathways working in competitive inhibition mode. Reports are available on information pertaining to SQS gene in several plants, but detailed information on SQS gene in Gymnema sylvestre R. Br. is not available. G. sylvestre is a priceless rare vine of central eco-region known for its medicinally important triterpenoids. Our work aims to characterize the GS-SQS gene in this high-value medicinal plant. Results Coding DNA sequences (CDS) with 1245 bp length representing GS-SQS gene predicted from transcriptome data in G. sylvestre was used for further characterization. The SWISS protein structure modeled for the GS-SQS amino acid sequence data had MolProbity Score of 1.44 and the Clash Score 3.86. The quality estimates and statistical score of Ramachandran plots analysis indicated that the homology model was reliable. For full-length amplification of the gene, primers designed from flanking regions of CDS encoding GS-SQS were used to get amplification against genomic DNA as template which resulted in approximately 6.2-kb sized single-band product. The sequencing of this product through NGS was carried out generating 2.32 Gb data and 3347 number of scaffolds with N50 value of 457 bp. These scaffolds were compared to identify similarity with other SQS genes as well as the GS-SQSs of the transcriptome. Scaffold_3347 representing the GS-SQS gene harbored two introns of 101 and 164 bp size. Both these intronic regions were validated by primers designed from adjoining outside regions of the introns on the scaffold representing GS-SQS gene. The amplification took place when the template was genomic DNA and failed when the template was cDNA confirmed the presence of two introns in GS-SQS gene in Gymnema sylvestre R. Br. Conclusion This study shows GS-SQS gene was very closely related to Coffea arabica and Gardenia jasminoides and this gene harbored two introns of 101 and 164 bp size.


Yeast ◽  
1997 ◽  
Vol 13 (3) ◽  
pp. 233-240 ◽  
Author(s):  
KRISTIN T. CHUN ◽  
HOWARD J. EDENBERG ◽  
MARK R. KELLEY ◽  
MARK G. GOEBL

FEBS Letters ◽  
1997 ◽  
Vol 406 (1-2) ◽  
pp. 69-74 ◽  
Author(s):  
Andrei Gabrielian ◽  
Kristian Vlahovicek ◽  
Sándor Pongor

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2748 ◽  
Author(s):  
Ae-Ree Lee ◽  
Na-Hyun Kim ◽  
Yeo-Jin Seo ◽  
Seo-Ree Choi ◽  
Joon-Hwa Lee

Z-DNA is stabilized by various Z-DNA binding proteins (ZBPs) that play important roles in RNA editing, innate immune response, and viral infection. In this review, the structural and dynamics of various ZBPs complexed with Z-DNA are summarized to better understand the mechanisms by which ZBPs selectively recognize d(CG)-repeat DNA sequences in genomic DNA and efficiently convert them to left-handed Z-DNA to achieve their biological function. The intermolecular interaction of ZBPs with Z-DNA strands is mediated through a single continuous recognition surface which consists of an α3 helix and a β-hairpin. In the ZBP-Z-DNA complexes, three identical, conserved residues (N173, Y177, and W195 in the Zα domain of human ADAR1) play central roles in the interaction with Z-DNA. ZBPs convert a 6-base DNA pair to a Z-form helix via the B-Z transition mechanism in which the ZBP first binds to B-DNA and then shifts the equilibrium from B-DNA to Z-DNA, a conformation that is then selectively stabilized by the additional binding of a second ZBP molecule. During B-Z transition, ZBPs selectively recognize the alternating d(CG)n sequence and convert it to a Z-form helix in long genomic DNA through multiple sequence discrimination steps. In addition, the intermediate complex formed by ZBPs and B-DNA, which is modulated by varying conditions, determines the degree of B-Z transition.


Sign in / Sign up

Export Citation Format

Share Document