quantum biology
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 33)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Yi-Fang Chang

First, some mathematical and physical developments of biology and medicine are discussed, including biofield and biological electromagnetics. Second, we research nonlinear biology and biotopology, in which some knots may describe the protein folding. Third, symbolic dynamics of biology and the extensive quantum biology are researched. Fourth, we study the biothermodynamics and entropy. In thermodynamics of pharmacology, the main effects of various drugs are to promote internal interactions in body, and entropy decrease. Further, we introduce the diagnostic space, treatment space and some medicinal vectors, and propose the matrix mechanics of pharmacology. Finally, we research biology, medicine and pharmacology with time sequences. If we master the medication time, this will be able to get the minimum amount of medication, and the drugs can play the maximum treatment effect. If period is accurate, it can determine the time of play, negotiations, attack, etc. But, period of each individual should be change follow age, etc. This is a very valuable research.


Author(s):  
Sergey Petoukhov

The article presents the author's results of studying hidden rules of structural organizations of long DNA sequences in eukaryotic and prokaryotic genomes. The results concern some rules of percentages (or probabilities) of n-plets in genomes. To reveal such rules, the author considers genomic DNA nucleotide sequences as multilayers sequences of n-plets and studies the percentage contents of n-plets in different layers. Unexpected rules of invariance of total sums of percentages in certain tetra-groupings of n-plets in different layers of genomic DNA sequences are revealed. These discovered rules are candidates for the role of universal genomic rules. A tensor family of matrix representations of interrelated DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, and 256 tetraplets is used in the study. This matrix approach allows revealing algebraic properties of the mentioned genetic rules of probabilities, which are useful for developing algebraic and quantum biology. Some analogies of the discovered genetic phenomena with phenomena of Gestalt psychology are noted and discussed. The author connects the received results about the genomic percentages rules with a supposition of P. Jordan, who is one of the creators of quantum mechanics and quantum biology, that life's missing laws are the rules of chance and probability of the quantum world. Additional attention is paid to the algebraic features of the system of structured DNA alphabets and their relationship with the methods of algebraic holography, known in the technique of processing discrete signals. The concept of algebraic-holographic genetics is being developed for the understanding of inherited holographic properties of organisms.


2021 ◽  
pp. 1-20
Author(s):  
Mahsa Faramarzpour ◽  
Mohammadreza Ghaderinia ◽  
Hamed Abadijoo ◽  
Hossein Aghababa

There is no doubt that quantum mechanics has become one of the building blocks of our physical world today. It is one of the most rapidly growing fields of science that can potentially change every aspect of our life. Quantum biology is one of the most essential parts of this era which can be considered as a game-changer in medicine especially in the field of cancer. Despite quantum biology having gained more attention during the last decades, there are still so many unanswered questions concerning cancer biology and so many unpaved roads in this regard. This review paper is an effort to answer the question of how biological phenomena such as cancer can be described through the quantum mechanical framework. In other words, is there a correlation between cancer biology and quantum mechanics, and how? This literature review paper reports on the recently published researches based on the principles of quantum physics with focus on cancer biology and metabolism.


Author(s):  
Sergey Petoukhov

The article presents the author's results of studying hidden rules of structural organizations of long DNA sequences in eukaryotic and prokaryotic genomes. The results concern some rules of percentages (or probabilities) of n-plets in genomes. To reveal such rules, the author considers genomic DNA nucleotide sequences as multilayers sequences of n-plets and studies the percentage contents of n-plets in different layers. Unexpected rules of invariance of total sums of percentages in certain tetra-groupings of n-plets in different layers of genomic DNA sequences are revealed. These discovered rules are candidates for the role of universal genomic rules. A tensor family of matrix representations of interrelated DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, and 256 tetraplets is used in the study. This matrix approach allows revealing algebraic properties of the mentioned genetic rules of probabilities, which are useful for developing algebraic and quantum biology. Some analogies of the discovered genetic phenomena with phenomena of Gestalt psychology are noted and discussed. The author connects the received results about the genomic percentages rules with a supposition of P. Jordan, who is one of the creators of quantum mechanics and quantum biology, that life's missing laws are the rules of chance and probability of the quantum world.


2021 ◽  
Vol 3 (1) ◽  
pp. 80-126
Author(s):  
Youngchan Kim ◽  
Federico Bertagna ◽  
Edeline M. D’Souza ◽  
Derren J. Heyes ◽  
Linus O. Johannissen ◽  
...  

Understanding the rules of life is one of the most important scientific endeavours and has revolutionised both biology and biotechnology. Remarkable advances in observation techniques allow us to investigate a broad range of complex and dynamic biological processes in which living systems could exploit quantum behaviour to enhance and regulate biological functions. Recent evidence suggests that these non-trivial quantum mechanical effects may play a crucial role in maintaining the non-equilibrium state of biomolecular systems. Quantum biology is the study of such quantum aspects of living systems. In this review, we summarise the latest progress in quantum biology, including the areas of enzyme-catalysed reactions, photosynthesis, spin-dependent reactions, DNA, fluorescent proteins, and ion channels. Many of these results are expected to be fundamental building blocks towards understanding the rules of life.


Author(s):  
Andrew M. K. Nassief

The usage of Quantum Similarity through the equation Z = {∀θ ∈ Z → ∃s ∈ S ∧ ∃t ∈ T : θ = (s, t)}, represents a way to analyze the way communication works in our DNA. Being able to create the object set reference for z being (s, t) in our DNA strands, we are able to set logical tags and representations of our DNA in a completely computational form. This will allow us to have a better understanding of the sequences that happen in our DNA. With this approach, we can also utilize mathematical formulas such as the Euler–Mascheroni constant, regression analysis, and computational proofs to answer important questions on Quantum biology, Quantum similarity, and Theoretical Physics.


Sign in / Sign up

Export Citation Format

Share Document