scholarly journals A New Thermal Energy Storage Technology for Power System Services

Author(s):  
Romano Acri ◽  
Fulvio Bassetti ◽  
Maria Carmen Falvo ◽  
Letizia Magaldi ◽  
Matteo Manganelli ◽  
...  

The decarbonization of the electrical energy sector is in progress for contrasting the climate changes, with a relevant increase of the Renewable Energy Sources (RES) power plants, mostly in Dispersed Generation (DG). The adequacy and the security of power systems, with a huge penetration of RES in DG is possible with a suitable integration of energy storage. In fact, energy storages are able to provide many different services for long-term adequacy and real time security. In this framework the present paper deals with a Thermal Energy Storage (TES) proposed for power system services. The technology presented is made up of modules containing a bed of fluidizable solid particles, which can store thermal energy from waste heat, process heat and/or from electricity. Stored thermal energy can be released, e.g. as superheated steam, for thermal uses or converted into electricity, by means of steam turbines. Some possible applications are then reported explaining advantages and limits.

2021 ◽  
pp. 1-40
Author(s):  
Zhiwen Ma ◽  
Xingchao Wang ◽  
Patrick Davenport ◽  
Jeffrey Gifford ◽  
Janna Martinek

Abstract Energy storage will become indispensable to complement the uncertainty of intermittent renewable resources and to firm the electricity supply as renewable power generation becomes the mainstream new-built energy source and fossil fuel power plants are phased out to meet carbon neutral utility targets. Current energy storage methods based on pumped storage hydropower or batteries have many limitations. Thermal energy storage (TES) has unique advantages in scale and siting flexibility to provide grid-scale storage capacity. A particle-based TES system is projected to have promising cost and performance characteristics to meet the future growing energy storage needs. This paper introduces the system and components required for particle TES to become technically and economically competitive. The system integrates electric particle heaters, particle TES within insulated concrete silos, and an efficient air-Brayton combined cycle power system to provide power for storage durations up to several days via low-cost, high-performance storage cycles. Design specifications and cost estimation of major components in a commercial-scale system are presented in this paper. A technoeconomic analysis based on preliminary component designs and performance indicates that particle TES integrated with an air-Brayton combined cycle power system has a path to achieve the targeted levelized cost of storage of 5¢/kWh-cycle at a round-trip efficiency of 50% when taking low-cost energy-specific components and leveraging basic assets from existing thermal power plants. The cost model provides insights for further development and economic potentials for long-duration energy storage.


2015 ◽  
Vol 6 ◽  
pp. 1487-1497 ◽  
Author(s):  
Nicole Pfleger ◽  
Thomas Bauer ◽  
Claudia Martin ◽  
Markus Eck ◽  
Antje Wörner

Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.


2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4410
Author(s):  
Adio Miliozzi ◽  
Franco Dominici ◽  
Mauro Candelori ◽  
Elisabetta Veca ◽  
Raffaele Liberatore ◽  
...  

Thermal energy storage (TES) systems for concentrated solar power plants are essential for the convenience of renewable energy sources in terms of energy dispatchability, economical aspects and their larger use. TES systems based on the use of concrete have been demonstrated to possess good heat exchange characteristics, wide availability of the heat storage medium and low cost. Therefore, the purpose of this work was the development and characterization of a new concrete-based heat storage material containing a concrete mix capable of operating at medium–high temperatures with improved performance. In this work, a small amount of shape-stabilized phase change material (PCM) was included, thus developing a new material capable of storing energy both as sensible and latent heat. This material was therefore characterized thermally and mechanically and showed increased thermal properties such as stored energy density (up to +7%, with a temperature difference of 100 °C at an average operating temperature of 250 °C) when 5 wt% of PCM was added. By taking advantage of these characteristics, particularly the higher energy density, thermal energy storage systems that are more compact and economically feasible can be built to operate within a temperature range of approximately 150–350 °C with a reduction, compared to a concrete-only based thermal energy storage system, of approximately 7% for the required volume and cost.


2019 ◽  
Vol 9 (5) ◽  
pp. 814 ◽  
Author(s):  
Zhu Jiang ◽  
Feng Jiang ◽  
Chuan Li ◽  
Guanghui Leng ◽  
Xuemin Zhao ◽  
...  

Thermal energy storage (TES) is a highly effective approach for mitigating the intermittency and fluctuation of renewable energy sources and reducing industrial waste heat. We report here recent research on the use of composite phase change materials (PCM) for applications over 700 °C. For such a category of material, chemical incompatibility and low thermal conductivity are often among the main challenges. Our aims are to address these challenges through the formulation of form-stable composite PCMs and to understand their thermophysical properties. The eutectic K2CO3-Na2CO3 salt was used as a PCM with MgO as a form stabilizer. We found that such a formulation could maintain shape stability with up to 60 wt.% PCM. With a melting point of ~710.1 °C and an energy density as high as 431.2 J/g over a temperature range between 550 °C and 750 °C, the composite PCM was shown to be thermally stable up to 885 °C. An addition of 10 wt.% SiC enhanced the overall thermal conductivity from 1.94 W·m−1 K−1 to 2.28 W·m−1 K−1, giving an enhancement of 17.53%. Analyses of thermal cycling data also showed a high extent of chemical compatibility among the ingredients of the composite PCM.


Author(s):  
Zhiwen Ma ◽  
Xingchao Wang ◽  
Patrick Davenport ◽  
Jeffrey Gifford ◽  
Janna Martinek

Abstract As renewable power generation becomes the mainstream new-built energy source, energy storage will become an indispensable need to complement the uncertainty of renewable resources to firm the power supply. When phasing out fossil-fuel power plants to meet the carbon neutral utility target in the midcentury around the world, large capacity of energy storage will be needed to provide reliable grid power. The renewable power integration with storage can support future carbon-free utility and has several significant impacts including increasing the value of renewable generation to the grid, improving the peak-load response, and balancing the electricity supply and demand. Long-duration energy storage (10–100 hours duration) can potentially complement the reduction of fossil-fuel baseload generation that otherwise would risk grid security when a large portion of grid power comes from variable renewable sources. Current energy storage methods based on pumped storage hydropower or batteries have many limitations. Thermal energy storage (TES) has unique advantages in scale and siting flexibility to provide grid-scale storage capacity. A particle-based TES system has promising cost and performance for the future growing energy storage needs. This paper introduces the system and components required for the particle TES to be technically and economically competitive. A technoeconomic analysis based on preliminary component designs and performance shows that the particle TES integrated with an efficient air-Brayton combined cycle power system can provide power for several days by low-cost, high-performance storage cycles. It addresses grid storage needs by enabling large-scale grid integration of intermittent renewables like wind and solar, thereby increasing their grid value. The design specifications and cost estimations of major components in a commercial scale system are presented in this paper. The cost model provides insights for further development and cost comparison with competing technologies.


2021 ◽  
pp. 1-27
Author(s):  
Jian Zhang ◽  
Heejin Cho ◽  
Pedro Mago

Abstract Off-grid concepts for homes and buildings have been a fast-growing trend worldwide in the last few years because of the rapidly dropping cost of renewable energy systems and their self-sufficient nature. Off-grid homes/buildings can be enabled with various energy generation and storage technologies, however, design optimization and integration issues have not been explored sufficiently. This paper applies a multi-objective genetic algorithm (MOGA) optimization to obtain an optimal design of integrated distributed energy systems for off-grid homes in various climate regions. Distributed energy systems consisting of renewable and non-renewable power generation technologies with energy storage are employed to enable off-grid homes/buildings and meet required building electricity demands. In this study, the building types under investigation are residential homes. Multiple distributed energy resources are considered such as combined heat and power systems (CHP), solar photovoltaic (PV), solar thermal collector (STC), wind turbine (WT), as well as battery energy storage (BES) and thermal energy storage (TES). Among those technologies, CHP, PV, and WT are used to generate electricity, which satisfies the building's electric load, including electricity consumed for space heating and cooling. Solar thermal energy and waste heat recovered from CHP are used to partly supply the building's thermal load. Excess electricity and thermal energy can be stored in the BES and TES for later use. The MOGA is applied to determine the best combination of DERs and each component's size to reduce the system cost and carbon dioxide emission for different locations. Results show that the proposed optimization method can be effectively and widely applied to design integrated distributed energy systems for off-grid homes resulting in an optimal design and operation based on a trade-off between economic and environmental performance.


Sign in / Sign up

Export Citation Format

Share Document