scholarly journals A Simple Multifractal Model for Self-Similar Traffic Flows in High-Speed Computer Networks

Author(s):  
Ginno Millán

This paper presents a simple and fast technique of multifractal traffic modeling. It proposes a method of fitting model to a given traffic trace. A comparison of simulation results obtained for an exemplary trace, multifractal model and Markov Modulated Poisson Process models has been performed.

2021 ◽  
Author(s):  
Ginno Millán

This paper presents a simple and fast technique of multifractal traffic modeling. It proposes a method of fitting model to a given traffic trace. A comparison of simulation results obtained for an exemplary trace, multifractal model and Markov Modulated Poisson Process models has been performed.


2021 ◽  
Author(s):  
Ginno Millán

This paper presents a simple technique of multifractal traffic modeling. It proposes a method of fitting model to a given traffic trace. A comparison of simulation results obtained for an exemplary trace, multifractal model and Markov Modulated Poisson Process models has been performed.


2021 ◽  
Author(s):  
Ginno Millán ◽  
Gastón Lefranc ◽  
Román Osorio-Comparán

A novel constructive mathematical model based on the multifractal formalism in order to accurately characterizing the localized fluctuations present in the course of traffic flows today high-speed computer networks is presented. The proposed model has the target to analyze self-similar second-order time series representative of traffic flows in terms of their roughness and impulsivity.


2021 ◽  
Author(s):  
Ginno Millán

This paper proposes a multifractal model, with the aim of providing a possible explanation for the locality phenomenon that appears in the estimation of the Hurst exponent in stationary second order temporal series representing self-similar traffic flows in current high-speed computer networks. It is shown analytically that this phenomenon occurs if the network flow consists of several components with different Hurst exponents.


2021 ◽  
Author(s):  
Ginno Millán ◽  
Gastón Lefranc ◽  
Román Osorio-Comparán

A novel constructive mathematical model based on the multifractal formalism in order to accurately characterizing the localized fluctuations present in the course of traffic flows today high-speed computer networks is presented. The proposed model has the target to analyze self-similar second-order time series representative of traffic flows in terms of their roughness and impulsivity.


Author(s):  
Ginno Millán ◽  
Héctor Kaschel ◽  
Gastón Lefranc

Traffic streams, sources as well as aggregated traffic flows, often exhibit long-range-dependent (LRD) properties. This paper presents the theoretical foundations to justify that the behavior of traffic in a high-speed computer network can be modeled from a self-similar perspective by limiting its scope of analysis to the network layer, since the most relevant properties of self-similar processes are consistent for use in the formulation of traffic models when performing this specific task.


2021 ◽  
Author(s):  
Ginno Millán

In previous work has been proposed, and theoretically confirmed, that the self-similar whit long-range dependence traffic flows may be limited to the network layer. In this paper applies this novel concept to the study of traffic recorded in an IEEE 802.3u network environment whit the aim to prove their validity as a simply and efficient tool for high speed computer network traffic flows analysis.


Author(s):  
Ginno Millán

This paper proposes a multifractal model, with the aim of providing a possible explanation for the locality phenomenon that appears in the estimation of the Hurst exponent in stationary second order temporal series representing self-similar traffic flows in current high-speed computer networks. It is shown analytically that this phenomenon occurs if the network flow consists of several components with different Hurst exponents.


Sign in / Sign up

Export Citation Format

Share Document