scholarly journals Hybrid Classical-Quantum Fitting Attention States to Statistical Mechanics of Neocortical Interactions

Author(s):  
Lester Ingber

Hybrid Classical-Quantum computing has already arrived at several commercial quantum computers, offered to researchers and businesses. Here, application is made to a classical-quantum model of human neocortex, Statistical Mechanics of Neocortical Interactions (SMNI), which has had its applications published in many papers since 1981. However, this project only uses Classical (super-)computers. Since 2015, a path-integral algorithm, PATHINT, used previously to accurately describe several systems in several disciplines, has been generalized from 1 dimension to N dimensions, and from classical to quantum systems, qPATHINT. Published papers have described the use of qPATHINT to neocortical interactions and financial options. The classical space described by SMNI applies nonlinear nonequilibrium multivariate statistical mechanics to synaptic neuronal interactions, while the quantum space described by qPATHINT applies synaptic contributions from Ca2+ waves generated by astrocytes at tripartite neuron-astrocyte-neuron sites. Previous SMNI publications since 2013 have calculated the astrocyte Ca2+ wave synaptic interactions from a closed-form (analytic) expression derived by the Principal Investigator (PI). However, more realistic random shocks to the Ca2+ waves from ions entering and leaving these wave packets should be included using qPATHINT between electroencephalographic (EEG) measurements which decohere the quantum wave packets. This current project extends calculations to multiple scales of interaction between classical events and expectations over the Ca2+ quantum processes to include these random shocks in previous codes used to fit EEG data to the SMNI model, that included the analytic forms for the quantum processes but now replaced by qPATHINT. The PI's Adaptive Simulated Annealing (ASA) importance-sampling optimization code is used for fitting the combined classical-quantum system. Gaussian Quadratures is used for numerical calculation of momenta expectations of the astrocyte processes that contribute to SMNI synaptic interactions. This project thereby demonstrates how some hybrid classical-quantum systems may be calculated quite well using only classical (super-)computers.

Author(s):  
Lester Ingber

Hybrid Classical-Quantum computing has already arrived at several commercial quantum computers, offered to researchers and businesses. Here, application is made to a classical-quantum model of human neocortex, Statistical Mechanics of Neocortical Interactions (SMNI), which has had its applications published in many papers since 1981. However, this project only uses Classical (super-)computers. Since 2015, a path-integral algorithm, PATHINT, used previously to accurately describe several systems in several disciplines, has been generalized from 1 dimension to N dimensions, and from classical to quantum systems, qPATHINT. Published papers have described the use of qPATHINT to neocortical interactions and financial options. The classical space described by SMNI applies nonlinear nonequilibrium multivariate statistical mechanics to synaptic neuronal interactions, while the quantum space described by qPATHINT applies synaptic contributions from Ca2+ waves generated by astrocytes at tripartite neuron-astrocyte-neuron sites. Previous SMNI publications since 2013 have calculated the astrocyte Ca2+ wave synaptic interactions from a closed-form (analytic) expression derived by the Principal Investigator (PI). However, more realistic random shocks to the Ca2+ waves from ions entering and leaving these wave packets should be included using qPATHINT between electroencephalographic (EEG) measurements which decohere the quantum wave packets. This current project extends calculations to multiple scales of interaction between classical events and expectations over the Ca2+ quantum processes to include these random shocks in previous codes used to fit EEG data to the SMNI model, that included the analytic forms for the quantum processes but now replaced by qPATHINT. The PI's Adaptive Simulated Annealing (ASA) importance-sampling optimization code is used for fitting the combined classical-quantum system. Gaussian Quadratures is used for numerical calculation of momenta expectations of the astrocyte processes that contribute to SMNI synaptic interactions. This project thereby demonstrates how some hybrid classical-quantum systems may be calculated quite well using only classical (super-)computers.


Author(s):  
Lester Ingber

Hybrid Classical-Quantum computing has already arrived at several commercial quantum computers, offered to researchers and businesses. Here, application is made to a classical-quantum model of human neocortex, Statistical Mechanics of Neocortical Interactions (SMNI), which has had its applications published in many papers since 1981. However, this project only uses Classical (super-)computers. Since 2015, a path-integral algorithm, PATHINT, used previously to accurately describe several systems in several disciplines, has been generalized from 1 dimension to N dimensions, and from classical to quantum systems, qPATHINT. Published papers have described the use of qPATHINT to neocortical interactions and financial options. The classical space described by SMNI applies nonlinear nonequilibrium multivariate statistical mechanics to synaptic neuronal interactions, while the quantum space described by qPATHINT applies synaptic contributions from Ca2+ waves generated by astrocytes at tripartite neuron-astrocyte-neuron sites. Previous SMNI publications since 2013 have calculated the astrocyte Ca2+ wave synaptic interactions from a closed-form (analytic) expression derived by the Principal Investigator. However, more realistic random shocks to the Ca2+ waves from ions entering and leaving these wave packets should be included using qPATHINT between electroencephalographic (EEG) measurements which decohere the quantum wave packets. This current project extends calculations to multiple scales of interaction between classical events and expectations over the Ca2+ quantum processes to include these random shocks in previous codes used to fit EEG data to the SMNI model, that included the analytic forms for the quantum processes but now replaced by qPATHINT. The Principal Investigator's Adaptive Simulated Annealing (ASA) importance-sampling optimization code is used for fitting the combined classical-quantum system. Gaussian Quadratures is used for numerical calculation of momenta expectations of the astrocyte processes that contribute to SMNI synaptic interactions. This project thereby demonstrates how some hybrid classical-quantum systems may be calculated quite well using only classical (super-)computers.


2021 ◽  
Vol 307 ◽  
pp. 04001
Author(s):  
Lester Ingber

Hybrid Classical-Quantum computing is now offered by several commercial quantum computers. In this project, a model of financial options, Statistical Mechanics of Financial Markets (SMFM), uses this approach. However, only Classical (super-)computers are used to include the quantum features of these models. Since 1989, Adaptive Simulated Annealing (ASA), an optimization code using importance-sampling, has fit parameters in such models. Since 2015, PATHINT, a path-integral numerical agorithm, has been used to describe several systems in several disciplines. PATHINT has been generalized from 1 dimension to N dimensions, and from classical to quantum systems into qPATHINT. Published papers have described the use of qPATHINT to neocortical interactions and financial options. The classical space modeled by SMFM fits parameters in conditional short-time probability distributions of nonlinear nonequilibrium multivariate statistical mechanics, while the quantum space modeled by qPATHINT describes quantum money. This project demonstrates how some hybrid classical-quantum systems may be calculated using only classical (super-)computers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonathan Barrett ◽  
Robin Lorenz ◽  
Ognyan Oreshkov

AbstractCausal reasoning is essential to science, yet quantum theory challenges it. Quantum correlations violating Bell inequalities defy satisfactory causal explanations within the framework of classical causal models. What is more, a theory encompassing quantum systems and gravity is expected to allow causally nonseparable processes featuring operations in indefinite causal order, defying that events be causally ordered at all. The first challenge has been addressed through the recent development of intrinsically quantum causal models, allowing causal explanations of quantum processes – provided they admit a definite causal order, i.e. have an acyclic causal structure. This work addresses causally nonseparable processes and offers a causal perspective on them through extending quantum causal models to cyclic causal structures. Among other applications of the approach, it is shown that all unitarily extendible bipartite processes are causally separable and that for unitary processes, causal nonseparability and cyclicity of their causal structure are equivalent.


1978 ◽  
Vol 64 (1) ◽  
pp. 1-34 ◽  
Author(s):  
P. Deift ◽  
W. Hunziker ◽  
B. Simon ◽  
E. Vock
Keyword(s):  

Author(s):  
James P. Sethna

This text distills the core ideas of statistical mechanics to make room for new advances important to information theory, complexity, active matter, and dynamical systems. Chapters address random walks, equilibrium systems, entropy, free energies, quantum systems, calculation and computation, order parameters and topological defects, correlations and linear response theory, and abrupt and continuous phase transitions. Exercises explore the enormous range of phenomena where statistical mechanics provides essential insight — from card shuffling to how cells avoid errors when copying DNA, from the arrow of time to animal flocking behavior, from the onset of chaos to fingerprints. The text is aimed at graduates, undergraduates, and researchers in mathematics, computer science, engineering, biology, and the social sciences as well as to physicists, chemists, and astrophysicists. As such, it focuses on those issues common to all of these fields, background in quantum mechanics, thermodynamics, and advanced physics should not be needed, although scientific sophistication and interest will be important.


2011 ◽  
Vol 18 (04) ◽  
pp. 339-351 ◽  
Author(s):  
Dariusz Chruściński ◽  
Andrzej Kossakowski ◽  
Giuseppe Marmo ◽  
E. C. G. Sudarshan

We analyze the dynamics of coupled classical and quantum systems. The main idea is to treat both systems as true quantum ones and impose a family of superselection rules which imply that the corresponding algebra of observables of one subsystem is commutative and hence may be treated as a classical one. Equivalently, one may impose a special symmetry which restricts the algebra of observables to the 'classical' subalgebra. The characteristic feature of classical-quantum dynamics is that it leaves invariant a subspace of classical-quantum states, that is, it does not create quantum correlations as measured by the quantum discord.


Sign in / Sign up

Export Citation Format

Share Document