scholarly journals Exponentials and Logarithms Properties in an Extended Complex Number Field

Author(s):  
Daniel Tischhauser

It is well established the complex exponential and logarithm are multivalued functions, both failing to maintain most identities originally valid over the positive integers domain. Moreover the general case of complex logarithm, with a complex base, is hardly mentionned in mathematic litterature. We study the exponentiation and logarithm as binary operations where all operands are complex. In a redefined complex number system using an extension of the C field, hereafter named E, we prove both operations always produce single value results and maintain the validity of identities such as logu (w v) = logu (w) + logu (v) where u, v, w in E. There is a cost as some algebraic properties of the addition and subtraction will be diminished, though remaining valid to a certain extent. In order to handle formulas in a C and E dual number system, we introduce the notion of set precision and set truncation. We show complex numbers as defined in C are insufficiently precise to grasp all subtleties of some complex operations, as a result multivaluation, identity failures and, in specific cases, wrong results are obtained when computing exclusively in C. A geometric representation of the new complex number system is proposed, in which the complex plane appears as an orthogonal projection, and where the complex logarithm an exponentiation can be simply represented. Finally we attempt an algebraic formalization of E.

Author(s):  
Daniel Tischhauser

It is well established the complex exponential and logarithm are multivalued functions, both failing to maintain most identities originally valid over the positive integers domain. Moreover the general case of complex logarithm, with a complex base, is hardly mentionned in mathematic litterature. We study the exponentiation and logarithm as binary operations where all operands are complex. In a redefined complex number system using an extension of the C field, hereafter named E, we proove both operations always produce single value results and maintain the validity of identities such as logu (w v) = logu (w) + logu (v) where u, v, w in E. There is a cost as some algebraic properties of the addition and subtraction will be diminished, though remaining valid to a certain extent. In order to handle formulas in a C and E dual number system, we introduce the notion of set precision and set truncation. We show complex numbers as defined in C are insufficiently precise to grasp all subtleties of some complex operations, as a result multivaluation, identity failures and, in specific cases, wrong results are obtained when computing exclusively in C. A geometric representation of the new complex number system is proposed, in which the complex plane appears as an orthogonal projection, and where the complex logarithm an exponentiation can be simply represented. Finally we attempt an algebraic formalization of E.


Author(s):  
Daniel Tischhauser

In this study we demonstrate the complex logarithm and exponential multivalued results and identity failures are not induced by the exponentiation and logarithm operations, but are solely induced by the definition of complex numbers and exponentiation as in C. We propose a new definition of the complex number set, in which the issues related to the identity failures and the multivalued results resolve. Furthermore the exponentiation is no longer defined by the logarithm, instead the complex logarithm formula can be deduced from the exponentiation. There is a cost as some algebraic properties of the addition and substraction will be diminished, though remaining valid to a certain extent. Finally we attempt a geometric and algebraic formalization of the new complex numbers set. It will appear clearly the new complex numbers system is a natural and harmonious complement to the C field.


Author(s):  
Daniel Tischhauser

In this study we demonstrate the complex logarithm and exponential multivalued results and identity failures are not induced by the exponentiation and logarithm operations, but are solely induced by the definition of complex numbers and exponentiation as in C. We propose a new definition of the complex number set, in which the issues related to the identity failures and the multivalued results resolve. Furthermore the exponentiation is no longer defined by the logarithm, instead the complex logarithm formula can be deduced from the exponentiation. There is a cost as some algebraic properties of the addition and substraction will be diminished, though remaining valid to a certain extent. Finally we attempt a geometric and algebraic formalization of the new complex numbers set. It will appear clearly the new complex numbers system is a natural and harmonious complement to the C field.


Author(s):  
Juan Carlos Ponce Campuzano

RESUMENExisten diversos métodos para visualizar funciones complejas, tales como graficar por separado sus componentes reales e imaginarios, mapear o transformar una región, el método de superficies analíticas y el método de dominio coloreado. Este último es uno de los métodos más recientes y aprovecha ciertas características del color y su procesamiento digital. La idea básica es usar colores, luminosidad y sombras como dimensiones adicionales, y para visualizar números complejos se usa una función real que asocia a cada número complejo un color determinado. El plano complejo puede entonces visualizarse como una paleta de colores construida a partir del esquema HSV (del inglés Hue, Saturation, Value – Matiz, Saturación, Valor). Como resultado, el método de dominio coloreado permite visualizar ceros y polos de funciones, ramas de funciones multivaluadas, el comportamiento de singularidades aisladas, entre otras propiedades. Debido a las características de GeoGebra en cuanto a los colores dinámicos, es posible implementar en el software el método de dominio coloreado para visualizar y estudiar funciones complejas, lo cual se explica en detalle en el presente artículo.Palabras claves: funciones complejas, método de dominio coloreado, colores dinámicos. RESUMOExistem vários métodos para visualizar funções complexas, como plotar seus componentes reais e imaginários separadamente, mapear ou transformar uma região, o método de superfície analítica e o método de domínio colorido. Este último é um dos métodos mais recentes e aproveita certas características da cor e seu processamento digital. A ideia básica é usar cores e brilho ou sombras como dimensões adicionais e, para visualizar números complexos, é usada uma função real que associa uma cor específica a cada número complexo. O plano complexo pode então ser visualizado como uma paleta de cores construída a partir do esquema HSV (de Matiz, Saturação, Valor - Matiz, Saturação, Valor). Como resultado, o método do domínio colorido permite visualizar zeros e pólos de funções, ramificações de funções com múltiplos valores, o comportamento de singularidades isoladas, entre outras propriedades. Devido às características do GeoGebra em termos de cores dinâmicas, é possível implementar o método do domínio colorido para visualizar e estudar funções complexas, o que é explicado em detalhes neste artigo.Palavras-chave: funções complexas, método de domínio colorido, cores dinâmicas ABSTRACTThere are various methods to visualize complex functions, such as plotting their real and imaginary components separately, mapping or transforming a region, the analytical landscapes method and the domain coloring method. The latter is one of the most recent methods and takes advantage of certain characteristics of color and its digital processing. The basic idea is to use colors and brightness or shadows as additional dimensions and to visualize complex numbers a real function is used that associates a specific color to each complex number. The complex plane can then be visualized as a color palette constructed from the HSV scheme (from Hue, Saturation, Value - Hue, Saturation, Value). As a result, the domain coloring method allows to visualize zeroes and poles of functions, branches of multivalued functions, the behavior of isolated singularities, among others properties. Due to the characteristics of GeoGebra in terms of dynamic colors, it is possible to implement the colored domain method to visualize and study complex functions, which is explained in detail in this article.Keywords:  function; complex; domain; coloring.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950053 ◽  
Author(s):  
YIN LI ◽  
HUA QIU

The [Formula: see text]-adic number field [Formula: see text] and the [Formula: see text]-adic analogue of the complex number field [Formula: see text] have a rich algebraic and geometric structure that in some ways rivals that of the corresponding objects for the real or complex fields. In this paper, we attempt to find and understand geometric structures of general sets in a [Formula: see text]-adic setting. Several kinds of fractal measures and dimensions of sets in [Formula: see text] are studied. Some typical fractal sets are constructed. It is worthwhile to note that there exist some essential differences between [Formula: see text]-adic case and classical case.


Author(s):  
Tariq Jamil ◽  
David Blest ◽  
Amer Al-Habsi

For years complex numbers have been treated as distant relatives of real numbers despite their widespread applications in the fields of electrical and computer engineering. These days computer operations involving complex numbers are most commonly performed by applying divide-and-conquer technique whereby each complex number is separated into its real and imaginary parts, operations are carried out on each group of real and imaginary components, and then the final result of the operation is obtained by accumulating the individual results of the real and imaginary components. This technique forsakes the advantages of using complex numbers in computer arithmetic and there exists a need, at least for some problems, to treat a complex number as one unit and to carry out all operations in this form. In this paper, we have analyzed and proposed a (–1–j)-base binary number system for complex numbers. We have discussed the arithmetic operations of two such binary numbers and outlined work which is currently underway in this area of computer arithmetic.  


2021 ◽  
Vol 10 (5) ◽  
pp. 2663-2673
Author(s):  
Ji Eun Kim

In a quaternion structure composed of four real dimensions, we derive a form wherein three complex numbers are combined. Thereafter, we examined whether this form includes the algebraic properties of complex numbers and whether transformations were necessary for its application to the system. In addition, we defined a regular function in quaternions, expressed as a combination of complex numbers. Furthermore, we derived the Cauchy-Riemann equation to investigate the properties of the regular function in the quaternions coupled with the complex number.


1976 ◽  
Vol 69 (1) ◽  
pp. 53-54
Author(s):  
Susan J. Grant ◽  
Ward R. Stewart

Most students are faced with the task of solving the equation x2 + 1 = 0 over the real numbers at some time in their algebra classes. After they substitute values for x unsuccessfully, they usually attempt to solve the equivalent equation x2 = -1. They soon realize that it is impossible to square a real number and obtain a negative number. At this point their teacher may define the imaginary number i to be and then proceed to develop the complex number system.


Author(s):  
A. F. Beardon

AbstractThe unwinding number of a complex number was introduced to process automatic computations involving complex numbers and multi-valued complex functions, and has been successfully applied to computations involving branches of the Lambert W function. In this partly expository note we discuss the unwinding number from a purely topological perspective, and link it to the classical winding number of a curve in the complex plane. We also use the unwinding number to give a representation of the branches $$W_k$$ W k of the Lambert W function as a line integral.


1985 ◽  
Vol 99 ◽  
pp. 11-30 ◽  
Author(s):  
Shigeyuki Kondo

A degeneration of K3 surfaces (over the complex number field) is a proper holomorphic map π: X→Δ from a three dimensional complex manifold to a disc, such that, for t ≠ 0, the fibres Xt = π-1(t) are smooth K3 surfaces (i.e. surfaces Xt with trivial canonical class KXt = 0 and dim H1(Xt, Oxt) = 0).


Sign in / Sign up

Export Citation Format

Share Document