scholarly journals Mitigation of Acute Hydrogen Sulfide and Ammonia Emissions from Swine Manure During 3-hour Agitation Using Pelletized Biochar

Author(s):  
Baitong Chen ◽  
Jacek Koziel ◽  
Myeongseong Lee ◽  
Samuel O'Brien ◽  
Peiyang Li ◽  
...  

The risk of inhalation exposure to elevated concentrations of hydrogen sulfide (H2S) and ammonia (NH3) during the agitation of stored swine manure is high. Once or twice a year, farmers agitate manure before pump-out and application to fields. Agitation of the swine manure causes the short-term releases of highly toxic levels of H2S and NH3. In our previous pilot-scale studies, the biochar powder had shown significant mitigation of H2S and NH3 emissions when surficially applied to manure immediately before agitation. However, fine biochar powder application poses hazards by itself and may not be practical to apply on a farm scale, especially when livestock and workers are present. We hypothesized that applying pelletized biochar to manure surface is just as effective as applying powder to protect farmers and animals from excessive exposure to H2S and NH3. This work reports on the lab-scale proof-of-the-concept trials with biochar pellets on the lab-scale. The objective was to compare the biochar pellets and biochar powder on their effectiveness of mitigation on H2S and NH3 gases during 3-hour long swine manure agitation. Three scenarios were compared in (n=3) trials (i) control, (ii) 12.5 mm thick surficial application to manure surface of biochar powder, and (iii) an equivalent (by mass) dose of pelletized biochar applied to manure surface. The biochar powder was bound with 35% (wt) water into ~5 × 10 mm (dia × length) pellets. Biochar powder was significantly (p<0.05) more effective than the biochar pellets. Still, pellets reduced total H2S and NH3 emissions by ~72% and ~68%, respectively (p=0.001), compared with ~99% by powder (p=0.001). The maximum H2S & NH3 concentrations were reduced from 48.1±4.8 ppm & 1,810±850 ppm to 20.8±2.95 ppm & 775±182 ppm by pellets, and to 22.1±16.9 ppm & 40.3±57 ppm by powder, respectively. These reductions are equivalent to reducing the maximum concentrations of H2S and NH3 during the 3-h manure agitation by 57% and 57% (pellets) and 54% and 98% (powder), respectively. Treated manure properties hinted at improved nitrogen retention, yet not significant due to high variability. We recommend scaling-up and trials on the farm-scales using biochar pellets to assess the feasibility of application to large manure surfaces and techno-economic evaluation.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 825
Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Myeongseong Lee ◽  
Samuel C. O’Brien ◽  
Peiyang Li ◽  
...  

The risk of inhalation exposure to elevated concentrations of hydrogen sulfide (H2S) and ammonia (NH3) during the agitation of stored swine manure is high. Once or twice a year, farmers agitate manure before pump-out and application to fields. Agitation of the swine manure causes the short-term releases of highly toxic levels of H2S and NH3. In our previous pilot-scale studies, the biochar powder showed significant mitigation of H2S and NH3 emissions when it was surficially applied to manure immediately before agitation. However, fine biochar powder application poses hazards by itself and may not be practical to apply on a farm scale, especially when livestock and workers are present. We hypothesized that applying pelletized biochar to manure surfaces is just as effective as applying powder to protect farmers and animals from excessive exposure to H2S and NH3. This work reports on the lab-scale proof-of-the-concept trials with biochar pellets on the lab scale. The objective was to compare the biochar pellets and biochar powder on their effectiveness of mitigation on H2S and NH3 gases during 3-h-long swine manure agitation. Three scenarios were compared in (n = 3) trials: (i) control, (ii) 12.5 mm thick surficial application to manure surface of biochar powder, and (iii) an equivalent (by mass) dose of pelletized biochar applied to the manure surface. The biochar powder was bound with 35% (wt) water into ~5 × 10 mm (dia × length) pellets. The biochar powder was significantly (p < 0.05) more effective than the biochar pellets. Still, pellets reduced total H2S and NH3 emissions by ~72% and ~68%, respectively (p = 0.001), compared with ~99% by powder (p = 0.001). The maximum H2S and NH3 concentrations were reduced from 48.1 ± 4.8 ppm and 1810 ± 850 ppm to 20.8 ± 2.95 ppm and 775 ± 182 ppm by pellets, and to 22.1 ± 16.9 ppm and 40.3 ± 57 ppm by powder, respectively. These reductions are equivalent to reducing the maximum concentrations of H2S and NH3 during the 3-h manure agitation by 57% and 57% (pellets) and 54% and 98% (powder), respectively. Treated manure properties hinted at improved nitrogen retention, yet they were not significant due to high variability. We recommend scaling up and trials on the farm-scale level using biochar pellets to assess the feasibility of application to large manure surfaces and techno-economic evaluation.


2020 ◽  
Vol 36 (4) ◽  
pp. 525-531
Author(s):  
Clinton D. Church ◽  
Sarah K. Fishel ◽  
Michael R. Reiner ◽  
Peter J.A. Kleinman ◽  
Alexander N. Hristov ◽  
...  

Highlights Swine manure contains nutrients and organic material that is beneficial to crops. Farmers are under increasing pressure and regulation to not apply high phosphorus manure to soils. The MAPHEX System removed greater than 96% of the phosphorus in swine manures. Both capital equipment and treatment costs were lower for swine manure than dairy manure. Abstract . Swine manure is typically in slurry form and contains nitrogen (N), phosphorus (P), and organic material that is beneficial to crops. Unfortunately, for economic and logistical reasons, manure tends to be applied to soils near where it is produced and P concentrations increase to the point that they are often in excess of crop demands. With the implication that runoff of excess P contributes to eutrophication of streams and other water bodies, farmers are experiencing increasing pressures and regulation to not apply manure to those soils. We previously reported on an invention capable of removing P from dairy manures. This pilot-scale study shows that the MAPHEX System can remove greater than 96% of the phosphorus in swine manures, and strongly suggests that, once scaled up, the essentially P free effluent could be beneficially used for fertigation without further loading the receiving soils with P. This scaling up has the potential to reduce storage volumes to allow for mitigation of overflow problems during large storms. Furthermore, this study suggests that capital equipment costs and treatment costs for swine manure would be lower than for treating dairy manure. Keywords: Chemical treatment, Manure, Phosphorus, Solid separation, Swine, Treatment systems.


2016 ◽  
Vol 9 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Gopi Krishna Kafle ◽  
Lide Chen ◽  
Benton Glaze ◽  
Terry Tindall ◽  
Sai Krishna Reddy Yadanaparthi

2017 ◽  
Vol 81 (12) ◽  
pp. 2400-2406 ◽  
Author(s):  
Kazutaka Kuroda ◽  
Akihiro Tanaka ◽  
Kenich Furuhashi ◽  
Kiyohiko Nakasaki

2021 ◽  
Vol 9 ◽  
Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
Hantian Ma ◽  
...  

Ammonia (NH3) emissions from animal agriculture can cause eutrophication of water ecosystems and are precursors to secondary particulate matter (PM2.5). NH3 emissions from stored swine manure represent nutrient loss affecting the fertilizing value of manure. The short-term emission bursts occur when farmers agitate manure before emptying storage and fertilizing fields. There is no proven technology to mitigate gaseous emissions during agitation, while the hazards of acute releases (e.g., H2S) are well-known. Biochar mitigates NH3 emissions from manure over the long-term. The objective of this research was to evaluate the mitigation of acute NH3 emissions during/after agitation. Two biochars, highly alkaline and porous (HAP from corn stover) and red oak (RO), were tested. The 6 and 12 mm-thick layers of biochar powder were surficial applied followed by 3 min agitation. NH3 concentrations were measured before/during/after agitation. Mitigation was assessed by comparing: (i) the maximum (peak) flux, (ii) total emission (from agitation start till NH3 concentration returned to the before-agitation), and (iii) the total emissions during agitation. The 12 mm HAP significantly (p &lt; 0.05) reduced (i–iii) by 63, 70, and 85%, respectively. The 6 mm HAP significantly reduced (i–iii) by 76, 75, and 78%, respectively. The 12 mm RO significantly reduced (i–iii) by 9, 53, and 57%, respectively. The 6 mm RO significantly reduced (i–iii) by 61, 86, and 63%, respectively. The NH3 emission kinetics model confirmed that a 6 mm dose was just as effective as the larger dose. More research is needed to optimize and scale-up mitigating emissions and retention of nutrients in manure with biochar.


Sign in / Sign up

Export Citation Format

Share Document