scholarly journals Experimental Phase Equilibria and Isopleth Section of 8Nb-TiAl Alloys

Author(s):  
Yong Xu ◽  
Yongfeng Liang ◽  
Lin Song ◽  
Guojian Hao ◽  
Bin Tian ◽  
...  

The 8Nb isopleth section of a Ti-Al-Nb system is experimentally determined based on thermal analysis and thermodynamic calculation methods to obtain the phase transformation and equilibrium relations required for material design and fabrication. The phase transus and relations for the 8Nb-TiAl system show some deviations from the calculated thermodynamic results. The ordered βo phase transforms from the disordered β/α phases at 1200–1400 °C over a large Al concentration range, and this transformation is considered to be an intermediate type between the first- and second-order phase transitions. Moreover, the βo phases are retained at the ambient temperature in the 8Nb-TiAl microstructures. The ωo phase transforms from the highly ordered βo phase, rather than from α2 or βo with low degree of atom ordering B2 (LOB2) structure, with Al concentration of 32–43 at.% at approximately 850 °C. From the experimental detection, the transition of the ωo phase from the βo phase is considered to be a further ordering process.

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1229
Author(s):  
Yong Xu ◽  
Yongfeng Liang ◽  
Lin Song ◽  
Guojian Hao ◽  
Bin Tian ◽  
...  

The 8Nb isopleth section of a Ti-Al-Nb system is experimentally determined based on thermal analysis and thermodynamic calculation methods to obtain the phase transformation and equilibrium relations required for material design and fabrication. The phase transus and relations for the 8Nb-TiAl system show some deviations from the calculated thermodynamic results. The ordered βo phase transforms from the disordered β/α phases at 1200–1400 °C over a large Al concentration range, and this transformation is considered to be an intermediate type between the first- and second-order phase transitions. Moreover, the βo phases are retained at the ambient temperature in the 8Nb-TiAl microstructures. The ωo phase transforms from the highly ordered βo phase, rather than from α2 or βo with a low degree of atom ordering B2 (LOB2) structure, with Al concentration of 32–43 at% at approximately 850 °C. From the experimental detection, the transition of the ωo phase from the βo phase is considered to be a further ordering process.


2017 ◽  
Vol 53 (3) ◽  
pp. 391-398 ◽  
Author(s):  
O. Martiník ◽  
B. Smetana ◽  
J. Dobrovská ◽  
A. Kalup ◽  
S. Zlá ◽  
...  

The study deals with precise determination of phase transformation temperatures of steel. A series of experimental measurements were carried out by Differential Thermal Analysis (DTA) and Direct Thermal Analysis (TA) to obtain temperatures very close to the equilibrium temperatures. There are presented results from the high temperatures region, above 1000?C, with focus on the solidus temperatures (TS), peritectic transition (TP) and liquidus (TL) of multicomponent steels. The data obtained were verified by statistical evaluation and compared with computational thermodynamic and empirical calculations. The calculations were performed using 15 empirical equations obtained by literature research (10 for TL and 5 for TS), as well as by software InterDendritic Solidification (IDS) and Thermo-Calc (2015b, TCFE8; TC). It was verified that both thermo-analytical methods used are set correctly; the results are reproducible, comparable and close to equilibrium state.


Author(s):  
Suhash Ghosh ◽  
Chittaranjan Sahay

Much research has been done to model laser hardening phase transformation kinetics. In that research, assumptions are made about the austenization of the steel that does not translate into accurate hardness depth calculations. The purpose of this paper is to develop an analytical method to accurately model laser hardening phase transformation kinetics of hypoeutectoid steel, accounting for non-homogeneous austenization. The modeling is split into two sections. The first models the transient thermal analysis to obtain temperature time-histories for each point in the workpiece. The second models non-homogeneous austenization and utilizes continuous cooling curves to predict microstructure and hardness. Non-homogeneous austenization plays a significant role in the hardness and hardness depth in the steel. A finite element based three-dimensional thermal analysis in ANSYS is performed to obtain the temperature history on three steel workpieces for laser hardening process with no melting; AISI 1030, 1040 and 1045 steels. This is followed by the determination of microstructural changes due to ferrite and pearlite transformation to austenite during heating and the subsequent austenite to martensite and other diffusional transformations during cooling. Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation is used to track the phase transformations during heating, including the effects of non-homogenous austenitization. The solid state nodal phase transformations during cooling are monitored on the material’s digitized Continuous Cooling Transformation (CCT) curve through a user defined input file in ANSYS for all cooling rates within the Heat Affected Zone (HAZ). Material non-linearity is included in the model by including temperature dependent thermal properties for the material. The model predictions for hardness underneath the laser and the HAZ match well with the experimental results published in literature.


MRS Advances ◽  
2019 ◽  
Vol 4 (25-26) ◽  
pp. 1465-1470
Author(s):  
Hideki Wakabayashi ◽  
Loris J. Signori ◽  
Ali Shaaban ◽  
Ryosuke Yamagata ◽  
Hirotoyo Nakashima ◽  
...  

AbstractDesign approaches and achievements for the development of wrought TiAl alloys to be used for LPT and HPC blades are constructed. In case of Ti-Al-M1-M2 quaternary systems, conventional equivalency concept does not work for the alloy design, and a new thermodynamic database for phase diagram calculations in multi-component systems of the alloys is built by introducing the interaction parameters among four phases of β−Ti, α2−Ti3Al, α−Ti and γ−TiAl phases in the systems, in order to reproduce the experimentally determined phase diagrams. Based on the phase diagram calculations, the composition range of a unique phase transformation pathway of β+α→α→β+γ in the multi-component system can be identified, and thus model alloys with excellent hot workability even at higher strain rate and mechanical properties can be successfully proposed. It can be concluded that an introduction of bcc β phase and the morphology control through the phase transformation pathway make it possible to improve the room temperature ductility, creep and fatigue crack propagation resistance.


2012 ◽  
Vol 83 ◽  
pp. 198-201 ◽  
Author(s):  
Hong Zhong ◽  
Yanlong Yang ◽  
Jinshan Li ◽  
Jun Wang ◽  
Tiebang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document