scholarly journals Experimental Proof of a Solar-powered Heat Pump System for Permafrost Thermal Stabilization

Author(s):  
Elizaveta S. Sharaborova ◽  
Taisia V. Shepitko ◽  
Egor Y. Loktionov

We have suggested earlier a new sustainable method for permafrost thermal stabilization that combines passive screening of solar radiation and precipitation with active solar-powered cooling of the near-surface soil layer thus preventing heat penetration in depth. Feasibility of this method has been shown by calculations, but needed experimental proof. In this article, we are presenting the results of soil temperature measurements obtained at the experimental implementation of this method outside of the permafrost area which actually meant higher thermal loads than in Polar Regions. We have shown that near-surface soil layer is kept frozen during the whole summer, even at air temperatures exceeding +30°C. Therefore, the method has been experimentally proven to be capable of sustaining soil frozen even in more extreme conditions than expected in permafrost areas. In addition to usual building and structure thermal stabilization, the method could be used to prevent the development of thermokarst, gas emission craters, and landslides; greenhouse gases, chemical, and biological pollution from the upper thawing layers at least in the area of human activities; protection against coastal erosion; and permafrost restoration after wildfires. Using commercially widely available components, the technology can be scaled up for virtually any size objects.

2019 ◽  
Vol 2 (2) ◽  
pp. 172-179
Author(s):  
Konstantin Fedin ◽  
Yury Kolesnikov ◽  
Luckymore Ngomayezwe

The results of experiments to assess the possible influence on seismic safety of structures of seasonal changes in the natural frequencies of the underlying soils are given. It is shown that the resonance properties of the surface soil layer during the year can vary more significantly than the properties of the structures built on them. This can lead to the coincidence of natural frequencies of the soil layer and the structures standing on it, which ultimately reduces their seismic safety.


1989 ◽  
Vol 21 (12) ◽  
pp. 1877-1880 ◽  
Author(s):  
S. Saito ◽  
K. Hattori ◽  
T. Okumura

Outflows of organic halide precursors (OXPs) from forest regions were studied in relation to water quality monitoring in the Yodo River basin. Firstly, the contribution of outflows from forest regions relative to the total was roughly estimated. Then equations for flows of these substances were formulated, divided into four different subflow categories: precipitation; throughfall; surface soil layer; and, deep soil layer. Finally, annual outflow loads were calculated for a test forest area.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lei Feng ◽  
Wanli Xu ◽  
Guangmu Tang ◽  
Meiying Gu ◽  
Zengchao Geng

Abstract Background Raising nitrogen use efficiency of crops by improving root system architecture is highly essential not only to reduce costs of agricultural production but also to mitigate climate change. The physiological mechanisms of how biochar affects nitrogen assimilation by crop seedlings have not been well elucidated. Results Here, we report changes in root system architecture, activities of the key enzymes involved in nitrogen assimilation, and cytokinin (CTK) at the seedling stage of cotton with reduced urea usage and biochar application at different soil layers (0–10 cm and 10–20 cm). Active root absorption area, fresh weight, and nitrogen agronomic efficiency increased significantly when urea usage was reduced by 25% and biochar was applied in the surface soil layer. Glutamine oxoglutarate amino transferase (GOGAT) activity was closely related to the application depth of urea/biochar, and it increased when urea/biochar was applied in the 0–10 cm layer. Glutamic-pyruvic transaminase activity (GPT) increased significantly as well. Nitrate reductase (NR) activity was stimulated by CTK in the very fine roots but inhibited in the fine roots. In addition, AMT1;1, gdh3, and gdh2 were significantly up-regulated in the very fine roots when urea usage was reduced by 25% and biochar was applied. Conclusion Nitrogen assimilation efficiency was significantly affected when urea usage was reduced by 25% and biochar was applied in the surface soil layer at the seedling stage of cotton. The co-expression of gdh3 and gdh2 in the fine roots increased nitrogen agronomic efficiency. The synergistic expression of the ammonium transporter gene and gdh3 suggests that biochar may be beneficial to amino acid metabolism.


Author(s):  
A. G. Buevich ◽  
I. E. Subbotina ◽  
A. V. Shichkin ◽  
A. P. Sergeev ◽  
E. M. Baglaeva

Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.


2018 ◽  
Vol 53 (3) ◽  
pp. 342-350 ◽  
Author(s):  
Juliano Corulli Corrêa ◽  
Marco André Grohskopf ◽  
Agostinho Rebellatto ◽  
Amanda Zolet Rigo ◽  
Arlei Coldebella

Abstract: The objective of this work was to recommend nitrogen doses from poultry litter-based organic fertilizers in powder and pellet forms, compared with mineral fertilizer, in a high-yield corn crop under no-tillage. The treatments consisted of a 3×3+1 factorial arrangement, with: three fertilizers, two organic derived from poultry litter in powder (OPo) and pelletized (OPe) forms and one mineral fertilizer (M); three N doses of 65, 100, and 135% of the recommended N requirement for corn; and an unfertilized control. After five corn crops farmed under no-tillage in a Rhodic Kandiudox, the recommended doses for fertilization with poultry litter organic fertilizers, with an expected yield equal to or greater than 8,000 kg ha-1, could be achieved from doses of 100 kg ha-1 N in OPe and M and of 121 kg ha-1 N in OPo. Increasing doses of the OPe, OPo, and M fertilizers raise the contents of organic carbon, N, and available P in the surface soil layer (0.0-0.1 m) and of exchangeable K up to a depth of 0.2 m, allowing to obtain N, P, and K contents in the plant tissue within the sufficiency range of the corn crop.


2015 ◽  
Vol 35 (11) ◽  
Author(s):  
闫小莉 YAN Xiaoli ◽  
戴腾飞 DAI Tengfei ◽  
邢长山 XING Changshan ◽  
贾黎明 JIA Liming ◽  
张龙宁 ZHANG Longning

Sign in / Sign up

Export Citation Format

Share Document