scholarly journals The construction and testing of an acoustic energy harvester consisting of a Helmholtz resonator and a loudspeaker

Author(s):  
Ikhsan Setiawan ◽  
Mulaiyinatus Sifa

Sound energy is all around but not properly utilized despite being a source of electricity. This research was conducted to construct and test an acoustic energy harvester consisting of a Helmholtz resonator and a loudspeaker. The resonator cavity was made of 10 mm-thick cube-shaped acrylic plates with an inner side length of 300 mm while its neck was made of PVC (polyvinyl chloride) pipes with an inner diameter of 55 mm and three length variations at 50 mm, 70 mm, and 90 mm. A 6-inch subwoofer loudspeaker was mounted on the resonator back wall facing the cavity with its terminals connected to a 100-ohm load resistor. The sound waves entering the resonator cavity through the neck were converted into the alternating electric current flowing through the resistor. The test was conducted experimentally by exposing the harvester to sound waves at a maximum sound pressure level (SPL) of 100 dB and frequency variations from 25 Hz to 200 Hz. The root-mean-square (rms) voltages across the resistor were measured to calculate the output rms values for electric power. The results showed seven spectrum peaks which appeared at frequencies of 31 Hz, 37 Hz, 41 Hz, 49 Hz, 58 Hz, 73 Hz, and 82 Hz. Moreover, a shorter neck was also observed to have produced higher output power as indicated by the highest value of 2.75 mW obtained by using a 50 mm-long resonator neck at 37 Hz frequency and 100 dB SPL. These findings showed the acoustic energy harvester used to be effective due to its ability to produce electricity even at low frequencies below 100 Hz.

2019 ◽  
Vol 3 (2) ◽  
pp. 50
Author(s):  
Hedwigis Harindra ◽  
Agung Bambang Setio Utomo ◽  
Ikhsan Setiawan

<span>Acoustic energy harvesting is one o</span><span lang="EN-US">f</span><span> many ways to harness </span><span lang="EN-US">acoustic </span><span>noises as wasted energy into use</span><span lang="EN-US">f</span><span>ul </span><span lang="EN-US">electical </span><span>energy using an acoustic </span><span>energy harvester. </span><span>Acoustic </span><span>energy harvester t</span><span lang="EN-US">h</span><span>at tested by Dimastya (2018) </span><span lang="EN-US">which is consisted of loudspeake</span><span>r </span><span lang="EN-US">and Helmholtz resonator, </span><span>produced two-peak spectrum. It is </span><span lang="EN-US">suspected</span><span> that the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">is due t</span><span>o </span><span lang="EN-US">Helmholtz</span><span> resonator resonance and the second peak </span><span lang="EN-US">comes</span><span lang="EN-US">from the resonance of the conversion </span><span>loudspeaker. </span><span lang="EN-US">This research is to experimentally confirm the guess of the origin of the first peak. The experiments are performed by adding silencer materials on the resonator inner wall which are expected to be able to reduce the height of first peak and to know </span><span>how </span><span lang="EN-US">they</span><span> a</span><span lang="EN-US">ff</span><span>ect t</span><span>he output electric power spectrum o</span><span lang="EN-US">f</span><span> t</span><span>he acoustic energy harvester. </span><span lang="EN-US">Three different silencer materials are used, those are</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam</span><span lang="EN-US">,</span><span> with</span><span lang="EN-US"> the same thickness of</span><span> 12 cm. </span><span lang="EN-US">The r</span><span>esult</span><span lang="EN-US">s</span><span> show that glasswool absorb</span><span lang="EN-US">s</span><span> sound more e</span><span lang="EN-US">ff</span><span>ectively than acostic </span><span lang="EN-US">f</span><span>oam and styro</span><span lang="EN-US">f</span><span>oam. The use o</span><span lang="EN-US">f</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam with 12 cm thickness lowered the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">by</span><span> 90% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,5 mW), 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), and 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), respectively. </span><span lang="EN-US">Based on these results, it is concluded that the guess of the origin of the first peak is confirmed.</span>


2021 ◽  
Vol 119 (25) ◽  
pp. 253903
Author(s):  
Xiaobin Cui ◽  
Jinjie Shi ◽  
Xiaozhou Liu ◽  
Yun Lai

Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Izhar ◽  
Farid Ullah Khan

Purpose The purpose of this paper is to develop a novel electromagnetic-based acoustic energy harvester (EH) for the application of wireless autonomous sensors. Design/methodology/approach The developed acoustic EH comprises a Helmholtz resonator (HR), a suspension system that consists of a flexible membrane and a permanent magnet, a couple of coils and a coil holder. Furthermore, the HR, used in the harvester, is designed for a specific resonant frequency based on simulation carried out in COMSOL Multiphysics®. Findings The developed harvester is tested both in lab under harmonic sound pressure levels (SPLs) and in real environment under random SPLs. In lab, when exposed to 100 dB SPL, the harvester generated a peak power of 212 µW. Furthermore, in real environment in vicinity of electric generator, the harvester produced an output voltage of about 110 mV collectively from its both coils. Originality/value In this paper, a novel geometric configuration for electromagnetic-based acoustic EH is proposed. In the developed harvester, two coils are placed in it to achieve enhanced electrical output from it for the first time.


2013 ◽  
Vol 476 ◽  
pp. 012003 ◽  
Author(s):  
Tomohiro Matsuda ◽  
Kazuki Tomii ◽  
Saori Hagiwara ◽  
Shuntaro Miyake ◽  
Yuichi Hasegawa ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tian-Chen Yuan ◽  
Fei Chen ◽  
Jian Yang ◽  
Rui-Gang Song ◽  
Yong Kong

To harvest acoustic energy from urban railways, a novel and practical acoustic energy harvester is developed. The harvester consists of a piezoelectric circular plate and a Helmholtz resonator. Based on the field test data of urban railways, the resonance frequencies of the piezoelectric circular plate and the Helmholtz resonator are near 800 Hz. The Helmholtz resonator is designed to amplify the sound pressure. Thus, a lumped parameter model is established. The piezoelectric circular plate is used to convert mechanical energy into electrical energy. The simulation results show that the output power of the harvester is approximately 25 μW and the maximum voltage is 0.149 V under the excitation of urban railway noise. The experiment device is also developed. The maximum output power of the harvester is 8.452 μW, and the maximum voltage is 0.082 V. The experimental and the numerical results are in good agreement and demonstrate the effectiveness of the proposed acoustic energy harvester.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Kuan Chen ◽  
Mohammed Albonaeem ◽  
Yeongmin Kim ◽  
Nam Jin Kim ◽  
Sang Hoon Lim ◽  
...  

A thermal-to-acoustic energy converter (TAC) was developed and tested to produce sound waves in the kilohertz range directly from solar energy. The converter consisted of a glass window and a small amount of steel wool in the shape of a disk sealed in an aluminum housing. A Fresnel lens and a chopper wheel with 60 holes in it were employed to generate a pulsed sunbeam of approximately 200 sun intensity as the heat source of the TAC. Various designs and techniques were tested to improve the sound amplitude and signal-to-noise ratio of the converter at high frequencies. Reduction in air volume, better cooling, and improvement in air tightness were found to be effective in enhancing the sound amplitude. A shockproof mount commonly used in radio studios to reduce microphone vibration was essential in noise reduction for the TAC at high chopper wheel rotations. The sound amplitude was found to rapidly decrease with the increase in pulse frequency of the sunbeam at low frequencies. The relationship between the decibel value and frequency of the generated sound waves was changed to linear for sunbeam frequencies above 1 kHz. This is the frequency at which the penetration of surface temperature fluctuations into the aluminum housing becomes comparable with the aluminum housing thickness. At a given frequency, the sound amplitude increased almost exponentially with the increase in solar flux intensity. To the best of our knowledge, the 3 kHz sound frequency measured in our experiments is by far the highest frequency produced by a solar-to-acoustical energy converter.


Sign in / Sign up

Export Citation Format

Share Document