A panel acoustic energy harvester based on the integration of acoustic metasurface and Helmholtz resonator

2021 ◽  
Vol 119 (25) ◽  
pp. 253903
Author(s):  
Xiaobin Cui ◽  
Jinjie Shi ◽  
Xiaozhou Liu ◽  
Yun Lai
2019 ◽  
Vol 3 (2) ◽  
pp. 50
Author(s):  
Hedwigis Harindra ◽  
Agung Bambang Setio Utomo ◽  
Ikhsan Setiawan

<span>Acoustic energy harvesting is one o</span><span lang="EN-US">f</span><span> many ways to harness </span><span lang="EN-US">acoustic </span><span>noises as wasted energy into use</span><span lang="EN-US">f</span><span>ul </span><span lang="EN-US">electical </span><span>energy using an acoustic </span><span>energy harvester. </span><span>Acoustic </span><span>energy harvester t</span><span lang="EN-US">h</span><span>at tested by Dimastya (2018) </span><span lang="EN-US">which is consisted of loudspeake</span><span>r </span><span lang="EN-US">and Helmholtz resonator, </span><span>produced two-peak spectrum. It is </span><span lang="EN-US">suspected</span><span> that the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">is due t</span><span>o </span><span lang="EN-US">Helmholtz</span><span> resonator resonance and the second peak </span><span lang="EN-US">comes</span><span lang="EN-US">from the resonance of the conversion </span><span>loudspeaker. </span><span lang="EN-US">This research is to experimentally confirm the guess of the origin of the first peak. The experiments are performed by adding silencer materials on the resonator inner wall which are expected to be able to reduce the height of first peak and to know </span><span>how </span><span lang="EN-US">they</span><span> a</span><span lang="EN-US">ff</span><span>ect t</span><span>he output electric power spectrum o</span><span lang="EN-US">f</span><span> t</span><span>he acoustic energy harvester. </span><span lang="EN-US">Three different silencer materials are used, those are</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam</span><span lang="EN-US">,</span><span> with</span><span lang="EN-US"> the same thickness of</span><span> 12 cm. </span><span lang="EN-US">The r</span><span>esult</span><span lang="EN-US">s</span><span> show that glasswool absorb</span><span lang="EN-US">s</span><span> sound more e</span><span lang="EN-US">ff</span><span>ectively than acostic </span><span lang="EN-US">f</span><span>oam and styro</span><span lang="EN-US">f</span><span>oam. The use o</span><span lang="EN-US">f</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam with 12 cm thickness lowered the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">by</span><span> 90% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,5 mW), 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), and 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), respectively. </span><span lang="EN-US">Based on these results, it is concluded that the guess of the origin of the first peak is confirmed.</span>


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Izhar ◽  
Farid Ullah Khan

Purpose The purpose of this paper is to develop a novel electromagnetic-based acoustic energy harvester (EH) for the application of wireless autonomous sensors. Design/methodology/approach The developed acoustic EH comprises a Helmholtz resonator (HR), a suspension system that consists of a flexible membrane and a permanent magnet, a couple of coils and a coil holder. Furthermore, the HR, used in the harvester, is designed for a specific resonant frequency based on simulation carried out in COMSOL Multiphysics®. Findings The developed harvester is tested both in lab under harmonic sound pressure levels (SPLs) and in real environment under random SPLs. In lab, when exposed to 100 dB SPL, the harvester generated a peak power of 212 µW. Furthermore, in real environment in vicinity of electric generator, the harvester produced an output voltage of about 110 mV collectively from its both coils. Originality/value In this paper, a novel geometric configuration for electromagnetic-based acoustic EH is proposed. In the developed harvester, two coils are placed in it to achieve enhanced electrical output from it for the first time.


2013 ◽  
Vol 476 ◽  
pp. 012003 ◽  
Author(s):  
Tomohiro Matsuda ◽  
Kazuki Tomii ◽  
Saori Hagiwara ◽  
Shuntaro Miyake ◽  
Yuichi Hasegawa ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tian-Chen Yuan ◽  
Fei Chen ◽  
Jian Yang ◽  
Rui-Gang Song ◽  
Yong Kong

To harvest acoustic energy from urban railways, a novel and practical acoustic energy harvester is developed. The harvester consists of a piezoelectric circular plate and a Helmholtz resonator. Based on the field test data of urban railways, the resonance frequencies of the piezoelectric circular plate and the Helmholtz resonator are near 800 Hz. The Helmholtz resonator is designed to amplify the sound pressure. Thus, a lumped parameter model is established. The piezoelectric circular plate is used to convert mechanical energy into electrical energy. The simulation results show that the output power of the harvester is approximately 25 μW and the maximum voltage is 0.149 V under the excitation of urban railway noise. The experiment device is also developed. The maximum output power of the harvester is 8.452 μW, and the maximum voltage is 0.082 V. The experimental and the numerical results are in good agreement and demonstrate the effectiveness of the proposed acoustic energy harvester.


Author(s):  
Yuanita Fara Abdillah ◽  
Ikhsan Setiawan ◽  
Agung Bambang S Utomo

<p class="AbstractEnglish"><strong>Abstract: </strong>Acoustic energy (sound) that is wasted in environment has potential to be alternative energy to produce electrical energy. This paper presents an experimental study of the effect of Helmholtz resonator neck diameter on the output electric power of an acoustic energy harvester. The cavity of the resonators is a cube-shaped with size of 30 cm ´ 30 cm ´ 30 cm made of acrylic. The resonator neck is cylindrical and has 8 cm length with four diameter variations of 5,2 cm, 6,9 cm, 8,2 cm, and 10,4 cm. A 6-inches subwoofer loudspeaker is used as acoustic transducers that converts sound into electric current. The experiment is performed by giving sound with SPL of 90 dB in the frequency range of (20-150) Hz. The output rms voltages from the loudspeaker are measured at a 5.0 ohm load resistor. It is found that there are always two peaks in the frequency spectrum that provide maximum electric power, namely at 27 Hz and 55 Hz. These peak frequencies do not depend on the neck diameter. On the other hand, the larger the neck diameter, the higher the generated electrical power. The highest rms electric power produced are 3.03 mW and 2.25 mW at the first and second peaks, respectively.</p><p class="AbstractEnglish"><strong>Abstrak: </strong>Energi akustik (bunyi) yang terbuang di lingkungan memiliki potensi menjadi salah satu energi alternatif untuk menghasilkan energi listrik. Makalah ini memaparkan tentang studi eksperimental pengaruh diameter leher resonator Helmholtz pada alat pemanen energi akustik terhadap daya listrik yang dihasilkan. Rongga resonator Helmholtz berbentuk kubus berukuran 30 cm ´ 30 cm ´ 30 cm terbuat dari akrilik. Leher resonator berbentuk silinder sepanjang 8 cm dengan empat variasi diameter yaitu 5,2 cm, 6,9 cm, 8,2 cm, dan 10,4 cm. Loudspeaker jenis subwoofer dengan diameter nominal 6 inci dipasang disisi belakang rongga resonator digunakan sebagai transduser akustik yang mengubah bunyi menjadi arus listrik. Eksperimen dilakukan dengan memberikan gelombang bunyi dengan SPL (sound pressure level) 90 dB dalam rentang frekuensi (20 - 150) Hz dan mengukur tegangan listrik rms keluaran dari loudspeaker pada resistor beban 5,0 ohm. Diperoleh bahwa selalu terdapat dua puncak spektrum frekuensi dengan daya listrik maksimum, yaitu pada 27 Hz dan 55 Hz. Frekuensi-frekuensi puncak ini tidak bergantung pada diameter leher resonator. Di sisi lain, ditemukan bahwa diameter leher yang semakin besar menghasilkan daya listrik yang semakin besar. Daya listrik rms terbesar yang dihasilkan (pada diameter 10,4 cm) adalah 3,03 mW dan 2,25 mW masing-masing pada puncak pertama dan puncak kedua.</p>


Sign in / Sign up

Export Citation Format

Share Document