scholarly journals Application of Electrochemical Impedance Spectroscopy to Evaluate the Corrosion Behavior of 2304 Duplex Stainless Steel Reinforced Rebar in Concrete Exposed in Chloride-Rich Environment

Author(s):  
Wu Zhao ◽  
2017 ◽  
Vol 35 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Chuanbo Zheng ◽  
Guo Yi

AbstractAs a nondestructive and sensitive method, electrochemical impedance spectroscopy (EIS) can be used to investigate the passivation and breakdown of passive films on steel. In this study, EIS, combined with slow strain rate test and scanning electron microscopy, was employed to study the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel in 0.5 m sulfuric acid solution under hydrogen-charging conditions. Results showed that the corrosion resistance of passive film on the hydrogen-charged specimen was lower than that for the specimen with no hydrogen charge. Hydrogen-induced cracking was evident after the specimens had been charged for 24 h. The phase shift in EIS, calculated from frequencies between 0.1 and 10 Hz, could be used to monitor the SCC process.


RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 80275-80285 ◽  
Author(s):  
Bhavana Rikhari ◽  
S. Pugal Mani ◽  
N. Rajendran

In the present work, dynamic electrochemical impedance spectroscopy (DEIS) was used to investigate the corrosion behavior of polypyrrole (PPy)-coated titanium (Ti) in simulated body fluid (SBF) solution.


2021 ◽  
Vol 63 (6) ◽  
pp. 505-511
Author(s):  
Songkran Vongsilathai ◽  
Anchaleeporn Waritswat Lothongkum ◽  
Gobboon Lothongkum

Abstract A new duplex 25Cr-3Ni-7Mn-0.66 N alloy was prepared in a vacuum arc re-melting furnace and characterized by metallographic and EPMA methods. Its corrosion behavior was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and a Mott-Schottky (M-S) analysis in artificial seawater at room temperature and compared with those of super and normal commercial duplex stainless steel (SDSS and DSS). No significant difference in the open circuit potentials and pitting potentials was observed. Its passive film current density lies between those of SDSS and DSS. This was confirmed by EIS analysis. A pit attack was observed on the δ-phase for all duplex samples, because the PREN16 of the δ-phase was lower than that of the γ-phase. From the Mott-Schottky analysis, the passive films were found to be composed of bi-layer structures, a p-type semiconductor inner layer, and a n-type semiconductor outer layer. The degree of defect as well as the effect of nitrogen in passive film layer are discussed with respect to the point defect model.


2017 ◽  
Vol 24 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Murat Ates

AbstractMethylcarbazole (MCz) and its nanocomposites with Montmorillonite nanoclay and Zn nanoparticles were chemically synthesized on a stainless steel (SS304) electrode. The modified electrode was characterized by optical microscope, scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy-attenuated transmission reflectance (FTIR-ATR), four-point probe, and electrochemical impedance spectroscopy (EIS) analysis. The synthesized stainless steel/poly(methylcarbazole) (SS/P(MCz)), stainless steel/poly(methylcarbazole)/nanoclay (SS/P(MCz)/nanoclay), and stainless steel/poly(methylcarbazole)/nanoZn (SS/P(MCz)/nanoZn) were studied by potentiodynamic polarization curves. The protective behavior of these coatings in 3.5% NaCl as the corrosion medium was investigated using Tafel polarization curves, as well as electrochemical impedance spectroscopy. The corrosion protection parameters were also supported by EIS and an equivalent circuit model of Rs(Qc(Rc(QpRct))). The corrosion current of the SS/P(MCz)/nanoclay samples was found to be much lower (icorr=0.010 μA×cm-2) than that of SS/P(MCz)/nanoZn (icorr=0.031 μA×cm-2) and pure SS/P(MCz) samples. These results reveal that chemically synthesized SS/P(MCz), SS/P(MCz)/nanoclay, and SS/P(MCz)/nanoZn nanocomposite film coating have high corrosion protection efficiency (PE=99.56%, 99.89%, and 99.67%, respectively). Thus, based on the study findings, we posit that nanoclay and Zn nanoparticles possess favorable barrier properties, which can be employed in order to achieve improvements in chemical corrosion protection through P(MCz) coating.


Sign in / Sign up

Export Citation Format

Share Document