Synthesis of poly(methylcarbazole) and its nanoclay and nanozinc composites and corrosion protection performances on stainless steel Type 304

2017 ◽  
Vol 24 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Murat Ates

AbstractMethylcarbazole (MCz) and its nanocomposites with Montmorillonite nanoclay and Zn nanoparticles were chemically synthesized on a stainless steel (SS304) electrode. The modified electrode was characterized by optical microscope, scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy-attenuated transmission reflectance (FTIR-ATR), four-point probe, and electrochemical impedance spectroscopy (EIS) analysis. The synthesized stainless steel/poly(methylcarbazole) (SS/P(MCz)), stainless steel/poly(methylcarbazole)/nanoclay (SS/P(MCz)/nanoclay), and stainless steel/poly(methylcarbazole)/nanoZn (SS/P(MCz)/nanoZn) were studied by potentiodynamic polarization curves. The protective behavior of these coatings in 3.5% NaCl as the corrosion medium was investigated using Tafel polarization curves, as well as electrochemical impedance spectroscopy. The corrosion protection parameters were also supported by EIS and an equivalent circuit model of Rs(Qc(Rc(QpRct))). The corrosion current of the SS/P(MCz)/nanoclay samples was found to be much lower (icorr=0.010 μA×cm-2) than that of SS/P(MCz)/nanoZn (icorr=0.031 μA×cm-2) and pure SS/P(MCz) samples. These results reveal that chemically synthesized SS/P(MCz), SS/P(MCz)/nanoclay, and SS/P(MCz)/nanoZn nanocomposite film coating have high corrosion protection efficiency (PE=99.56%, 99.89%, and 99.67%, respectively). Thus, based on the study findings, we posit that nanoclay and Zn nanoparticles possess favorable barrier properties, which can be employed in order to achieve improvements in chemical corrosion protection through P(MCz) coating.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 113
Author(s):  
Jacob Ress ◽  
Ulises Martin ◽  
Juan Bosch ◽  
David M. Bastidas

The protection of mild steel by modified epoxy coating containing colophony microencapsulated corrosion inhibitors was investigated in this study. The corrosion behavior of these epoxy coatings containing colophony microcapsules was studied by electrochemical analysis using cyclic potentiodynamic polarization and electrochemical impedance spectroscopy. The microcapsule coating showed decreased corrosion current densities of 2.75 × 10−8 and 3.21 × 10−8 A/cm2 along with corrosion potential values of 0.349 and 0.392 VSCE for simulated concrete pore solution and deionized water with 3.5 wt.% NaCl, respectively, indicating improved corrosion protection in both alkaline and neutral pH. Electrochemical impedance spectroscopy analysis also showed charge transfer resistance values over one order of magnitude higher than the control sample, corroborating the electrochemical corrosion potential and current density testing results. Overall, the use of colophony microcapsules showed improved corrosion protection in simulated concrete pore solution and DI water solutions containing chloride ions.


2015 ◽  
Vol 227 ◽  
pp. 515-518 ◽  
Author(s):  
Luigi Calabrese ◽  
Lucio Bonaccorsi ◽  
Chiara Borsellino ◽  
Angela Caprì ◽  
Francesca Fabiano ◽  
...  

In this work the assessment of the corrosion performances in saliva solution of NdFeB magnets coated with silane layers was studied for its application in orthodontic brackets. The silane film, deposited by dip coating technique, has been prepared with varying dipping steps, with the purpose to identify the number of layers able to achieve an optimal protective action. Corrosion protection performance, during immersion in Fusayama synthetic saliva solution, was evaluated by means electrochemical impedance spectroscopy (EIS). The silane coatings evidenced good barrier properties resulting in an improvement of the anti-corrosion performances of the magnets. Better results were observed for samples with at least 15 layers of silane, that evidenced still acceptable protective action after three days of immersion in a Fusayama synthetic saliva solution.


2011 ◽  
Vol 695 ◽  
pp. 425-428
Author(s):  
Duo Wang ◽  
De Ning Zou ◽  
Chang Bin Tang ◽  
Kun Wu ◽  
Huan Liu

Supermartensitic stainless steel grades are widely used in oil and gas industries to substitute duplex and super duplex stainless steels these years. In this paper the corrosion behavior of supermartensitic stainless steels with different chemical compositions, S-165 and HP, was investigated in Cl-environment. All the samples were treated by quenching at 1000 °C followed by tempering at 630 °C for 2h. After heat treatment, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were determined on both kinds of samples. Polarization curves shows that the metastable pitting nucleuses were formed in passive area and the Cr content is the most important factor leading to the differences of pitting potential. The potentiodynamic polarization curves were conducted at various NaCl contents (5000, 15000 and 35000 ppm) and emphasized the need to account for the Cl-sensitivity of samples under corrosion environment. The results show that, the pitting potential decrease with the increase of chloride contents. The behavior of passive film was analyzed by electrochemical impedance spectroscopy.


2020 ◽  
Vol 1 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Ingmar Bösing ◽  
Georg Marquardt ◽  
Jorg Thöming

Martensitic stainless steels are widely used materials. Their mechanical and corrosion properties are strongly influenced by their microstructure and thereby can be affected by heat treatment. In the present study, the effect of different austenitizing temperatures on the passive film growth kinetics of martensitic stainless steel is studied by electrochemical impedance spectroscopy. The data was further fitted by the point defect model to determine kinetic parameters. We show that an increasing austenitizing temperature leads to a more protective passive film and slows down passive film dissolution in sulfuric acid.


Sign in / Sign up

Export Citation Format

Share Document