Development of a Surface Roughness Measurement System in a Narrow Borehole

2016 ◽  
Vol 10 (5) ◽  
pp. 821-826
Author(s):  
Eiki Okuyama ◽  
◽  
Yuichi Suzuki ◽  
Masahiro Morikawa ◽  
Yuma Suzuki ◽  
...  

In industrial fields, it is frequently necessary to measure surface roughness in confined spaces such as boreholes and grooves in workpieces. However, the surface roughness of a narrow borehole can be measured only up to a few millimeters from its end when using a small stylus. Alternatively, destructive measurements must be performed. We previously proposed a novel surface roughness measurement sensor. To make the sensor sufficiently small, we used a stylus with a cylindrical mirror and a lensed fiber instead of a conventional inductive pick-up. The proposed sensor converts the signal used for measuring the surface roughness of a borehole into an optical signal, which is transferred outside the borehole by an optical fiber. The experimental results demonstrate that this system has a measurement range of 8 μm and a sensitivity of 19 nm. In this paper, we propose a carriage that supports the stylus when measuring the surface roughness in a small borehole. The proposed carriage has two degrees of freedom: displacement along the borehole axis and rotation around the borehole axis. In experiments, the surface roughness of standard test pieces was measured using the proposed method and the conventional method. The measurement results obtained by these methods were found to be very similar. Furthermore, a borehole with 2.4 mm diameter was measured. The measurement result included the characteristic wave that was obtained by the conventional method in places. The experiments also revealed some problems of the proposed system. For example, the setting procedure of the measured surface in the 8 μm measurement range was difficult. Consequently, a large measurement range or a null method is required.

2014 ◽  
Vol 939 ◽  
pp. 491-498 ◽  
Author(s):  
Eiki Okuyama ◽  
Wataru Yoshinari ◽  
Yuichi Suzuki ◽  
Riku Yoshida ◽  
Ichiro Yoshida ◽  
...  

In various industrial fields, it is frequently necessary to measure surface roughness in confined spaces such as boreholes and grooves. However, using a small stylus, the surface roughness of a narrow borehole can be directly measured only a few millimeters from its end; alternatively, destructive measurements must be performed. This major disadvantage of conventional stylus-based surface profilometers is mainly due to an inductive pick-up that is connected to the stylus used to detect the surface roughness. In this paper, we propose a novel surface roughness measurement sensor. To make the surface roughness sensor small, we used a stylus with a cylindrical mirror and a lensed fiber instead of a conventional inductive pick-up. The proposed sensor converts the signal obtained by measuring the surface roughness of a borehole into an optical signal, which is transferred outside the borehole by an optical fiber. Experimental results demonstrate that this system has a measurement range of 8 μm and a sensitivity of 19 nm. Surface profiles were measured by the proposed sensor and by a conventional surface profiler and the results were found to be very similar.


2017 ◽  
Vol 137 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Tetsuo Fukuchi ◽  
Norikazu Fuse ◽  
Mitsutoshi Okada ◽  
Tomoharu Fujii ◽  
Maya Mizuno ◽  
...  

2013 ◽  
Vol 465-466 ◽  
pp. 764-768 ◽  
Author(s):  
Tanel Aruväli ◽  
Tauno Otto

The paper investigates in-process signal usage in turning for indirect surface roughness measurement. Based on theoretical surface roughness value and in-process signal, a model is proposed for surface roughness evaluation. Time surface roughness and in-process signal surface roughness correlation based analysis is performed to characterize tool wear component behavior among others. Influencing parameters are grouped based on their behavior in time. Moreover, Digital Object Memory based solution and algorithm is proposed to automate indirect surface roughness measurement process.


Sensors ◽  
2013 ◽  
Vol 13 (9) ◽  
pp. 11772-11781 ◽  
Author(s):  
Félix Salazar ◽  
Alberto Barrientos

Sign in / Sign up

Export Citation Format

Share Document