large measurement
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 44)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Haofeng Zang ◽  
Zheng Xi ◽  
Zhiyu Zhang ◽  
Yonghua Lu ◽  
Pei Wang

Abstract A long range, high precision and compact transverse displacement metrology method is of crucial importance in many research areas. We propose and experimentally demonstrate the first prototype polarization-encoded metasurface for ultrasensitive transverse displacement metrology. The transverse displacement of the metasurface is encoded into the polarization direction of the outgoing light via the Pancharatnam-Berry phase. By measuring the output light polarization direction, the metasurface’s position can be readout directly according to the Malus law. We experimentally demonstrate nanometer displacement resolution with the uncertainty on the order of 100 pm for a large measurement range of 200 µm with the total area of the metasurface being within 900 µm x 900 µm. The measurement range can be extended further using a larger metasurface. Our work largely broadens the existing application areas of metasurface and opens new avenue of applying metasurface in the field of ultrasensitive optical transverse displacement metrology.


2021 ◽  
Author(s):  
Isabell Bludau ◽  
Charlotte Nicod ◽  
Claudia Martelli ◽  
Peng Xue ◽  
Moritz Heusel ◽  
...  

Protein complexes constitute the primary functional modules of cellular activity. To respond to perturbations, complexes undergo changes in their abundance, subunit composition or state of modification. Understanding the function of biological systems requires global strategies to capture this contextual state information on protein complexes and interaction networks. Methods based on co-fractionation paired with mass spectrometry have demonstrated the capability for deep biological insight but the scope of studies using this approach has been limited by the large measurement time per biological sample and challenges with data analysis. As such, there has been little uptake of this strategy beyond a few expert labs into the broader life science community despite rich biological information content. We present a rapid integrated experimental and computational workflow to assess the re-organization of protein complexes across multiple cellular states. It enables complex experimental designs requiring increased sample/condition numbers. The workflow combines short gradient chromatography and DIA/SWATH mass spectrometry with a data analysis toolset to quantify changes in complex organization. We applied the workflow to study the global protein complex rearrangements of THP-1 cells undergoing monocyte to macrophage differentiation and a subsequent stimulation of macrophage cells with lipopolysaccharide. We observed massive proteome organization in functions related to signaling, cell adhesion, and extracellular matrix during differentiation, and less pronounced changes in processes related to innate immune response induced by the macrophage stimulation. We therefore establish our integrated differential pipeline for rapid and state-specific profiling of protein complex organization with broad utility in complex experimental designs.


2021 ◽  
Vol 13 (21) ◽  
pp. 4231
Author(s):  
Fangfang Shen ◽  
Xuyang Chen ◽  
Yanming Liu ◽  
Yaocong Xie ◽  
Xiaoping Li

Conventional compressive sensing (CS)-based imaging methods allow images to be reconstructed from a small amount of data, while they suffer from high computational burden even for a moderate scene. To address this problem, this paper presents a novel two-dimensional (2D) CS imaging algorithm for strip-map synthetic aperture radars (SARs) with zero squint angle. By introducing a 2D separable formulation to model the physical procedure of the SAR imaging, we separate the large measurement matrix into two small ones, and then the induced algorithm can deal with 2D signal directly instead of converting it into 1D vector. As a result, the computational load can be reduced significantly. Furthermore, thanks to its superior performance in maintaining contour information, the gradient space of the SAR image is exploited and the total variation (TV) constraint is incorporated to improve resolution performance. Due to the non-differentiable property of the TV regularizer, it is difficult to directly solve the induced TV regularization problem. To overcome this problem, an improved split Bregman method is presented by formulating the TV minimization problem into a sequence of unconstrained optimization problem and Bregman updates. It yields an accurate and simple solution. Finally, the synthesis and real experiment results demonstrate that the proposed algorithm remains competitive in terms of high resolution and high computational efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6344
Author(s):  
Néstor Diego Rivera-Campoverde ◽  
José Luis Muñoz-Sanz ◽  
Blanca del Valle Arenas-Ramirez

This article proposes a methodology for the estimation of emissions in real driving conditions, based on board diagnostics data and machine learning, since it has been detected that there are no models for estimating pollutants without large measurement campaigns. For this purpose, driving data are obtained by means of a data logger and emissions through a portable emissions measurement system in a real driving emissions test. The data obtained are used to train artificial neural networks that estimate emissions, having previously estimated the relative importance of variables through random forest techniques. Then, by the application of the K-means algorithm, labels are obtained to implement a classification tree and thereby determine the selected gear by the driver. These models were loaded with a data set generated covering 1218.19 km of driving. The results generated were compared to the ones obtained by applying the international vehicle emissions model and with the results of the real driving emissions test, showing evidence of similar results. The main contribution of this article is that the generated model is stronger in different traffic conditions and presents good results at the speed interval with small differences at low average driving speeds because more than half of the vehicle’s trip occurs in urban areas, in completely random driving conditions. These results can be useful for the estimation of emission factors with potential application in vehicular homologation processes and the estimation of vehicular emission inventories.


Information ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 371
Author(s):  
Lingyu Ai ◽  
Min Pang ◽  
Changxu Shan ◽  
Chao Sun ◽  
Youngok Kim ◽  
...  

Due to the large measurement error in the practical non-cooperative scene, the passive localization algorithms based on traditional numerical calculation using time difference of arrival (TDOA) and frequency difference of arrival (FDOA) often have no solution, i.e., the estimated result cannot meet the localization background knowledge. In this context, this paper intends to introduce interval analysis theory into joint FDOA/TDOA-based localization algorithm. The proposed algorithm uses the dichotomy algorithm to fuse the interval measurement of TDOA and FDOA for estimating the velocity and position of a moving target. The estimation results are given in the form of an interval. The estimated interval must contain the true values of the position and velocity of the radiation target, and the size of the interval reflects the confidence of the estimation. The point estimation of the position and the velocity of the target is given by the midpoint of the estimation interval. Simulation analysis shows the efficacy of the algorithm.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1307
Author(s):  
Zhonghua Sun ◽  
Curtise Kin Cheung Ng ◽  
Ying How Wong ◽  
Chai Hong Yeong

The diagnostic value of coronary computed tomography angiography (CCTA) is significantly affected by high calcification in the coronary arteries owing to blooming artifacts limiting its accuracy in assessing the calcified plaques. This study aimed to simulate highly calcified plaques in 3D-printed coronary models. A combination of silicone + 32.8% calcium carbonate was found to produce 800 HU, representing extensive calcification. Six patient-specific coronary artery models were printed using the photosensitive polyurethane resin and a total of 22 calcified plaques with diameters ranging from 1 to 4 mm were inserted into different segments of these 3D-printed coronary models. The coronary models were scanned on a 192-slice CT scanner with 70 kV, pitch of 1.4, and slice thickness of 1 mm. Plaque attenuation was measured between 1100 and 1400 HU. Both maximum-intensity projection (MIP) and volume rendering (VR) images (wide and narrow window widths) were generated for measuring the diameters of these calcified plaques. An overestimation of plaque diameters was noticed on both MIP and VR images, with measurements on the MIP images close to those of the actual plaque sizes (<10% deviation), and a large measurement discrepancy observed on the VR images (up to 50% overestimation). This study proves the feasibility of simulating extensive calcification in coronary arteries using a 3D printing technique to develop calcified plaques and generate 3D-printed coronary models.


2021 ◽  
Vol 11 (16) ◽  
pp. 7655
Author(s):  
Chengjie Li ◽  
Xuefeng Zhang ◽  
Mingang Meng ◽  
Bin Li ◽  
Changyou Li

An online corn moisture content measurement device would be a key technology for providing accurate feedback information for industrial drying processes to enable the dynamic tracking and closed-loop control of the process. To overcome the problem of large measurement error caused by the characteristics of the corn flow state and the pore distribution when a parallel plate capacitor is applied to the online moisture content measurement process, in this study, we summarized the constraint conditions of the sensor’s structure parameters by mathematical modeling and calculated the optimal sensor design size. Moreover, the influence of porosity variation on moisture content measurement was studied by using the designed sensor. In addition, a mathematical model for calculating corn moisture content was obtained for the moisture content range of 14.7% to 26.4% w.b., temperature of 5 °C to 35 °C, and porosity of 38.4% to 44.6%. The results indicated that the fluctuation in the online moisture content measurement value was obviously reduced after the porosity compensation. The absolute error of the measured moisture content value was −0.62 to 0.67% w.b., and the average of absolute values of error was 0.32% w.b. The main results provide a theoretical basis and technical support for the development of intelligent industrial grain–drying equipment.


2021 ◽  
Vol 11 (16) ◽  
pp. 7602
Author(s):  
Paul Wilhelm ◽  
Michael Eggert ◽  
Julia Hornig ◽  
Stefan Oertel

The high-resolution bistatic lidar developed at the Physikalisch-Technische Bundesanstalt (PTB) aims to overcome the limitations of conventional monostatic lidar technology, which is widely used for wind velocity measurements in wind energy and meteorology applications. Due to the large measurement volume of a combined optical transmitter and receiver tilting in multiple directions, monostatic lidar generally has poor spatial and temporal resolution. It also exhibits large measurement uncertainty when operated in inhomogeneous flow; for instance, over complex terrain. In contrast, PTB’s bistatic lidar uses three dedicated receivers arranged around a central transmitter, resulting in an exceptionally small measurement volume. The coherent detection and modulation schemes used allow the detection of backscattered, Doppler shifted light down to the scale of single aerosols, realising the simultaneous measurement of all three wind velocity components. This paper outlines the design details and theory of operation of PTB’s bistatic lidar and provides an overview of selected comparative measurements. The results of these measurements show that the measurement uncertainty of PTB’s bistatic lidar is well within the measurement uncertainty of traditional cup anemometers while being fully independent of its site and traceable to the SI units. This allows its use as a transfer standard for the calibration of other remote sensing devices. Overall, PTB’s bistatic lidar shows great potential to improve the capability and accuracy of wind velocity measurements, such as for the investigation of highly dynamic flow processes upstream and in the wake of wind turbines.


Author(s):  
Paul Wilhelm ◽  
Michael Eggert ◽  
Julia Hornig ◽  
Stefan Oertel

The high-resolution bistatic lidar developed at the Physikalisch-Technische Bundesanstalt (PTB) aims to overcome the limitations of conventional monostatic lidar technology which is widely used for wind velocity measurements in wind energy and meteorology applications. Due to the large measurement volume of a combined optical transmitter and receiver tilting in multiple directions, monostatic lidar generally has poor spatial and temporal resolution. It also exhibits large measurement uncertainty when operated in inhomogeneous flow, for instance, over complex terrain. In contrast, PTB’s bistatic lidar uses three dedicated receivers arranged around a central transmitter, resulting in an exceptionally small measurement volume. The coherent detection and modulation schemes used allow the detection of backscattered, Doppler shifted light down to the scale of single aerosols, realising the simultaneous measurement of all three wind velocity components. This paper outlines design details and the theory of operation of PTB’s bistatic lidar and provides an overview of selected comparative measurements. The results of these measurements have shown that the measurement uncertainty of PTB’s bistatic lidar is well within the measurement uncertainty of traditional cup anemometers, while being fully independent of its site and traceable to the SI units. This allows its use as a transfer standard for the calibration of other remote sensing devices. Overall, PTB’s bistatic lidar shows great potential to universally improve the capability and accuracy of wind velocity measurements, such as for the investigation of highly dynamic flow processes upstream and in the wake of wind turbines.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4483
Author(s):  
Lihuan Huo ◽  
Rulong Bai ◽  
Man Jiang ◽  
Bing Chen ◽  
Jianfeng Chen ◽  
...  

With the increase in satellite communication interference, the tri-satellite time difference of arrival (TDOA) localization technique, which is an effective method to determine the location of the interference using sensors or antennas, has been developed rapidly. The location of the interference source is determined through the intersection of the TDOA lines of position (LOP). However, when the two TDOA LOP have two mirrored intersection points, it is theoretically difficult to determine the real location. Aiming at this problem, a method for eliminating mirrored location based on multiple moment TDOA is proposed in this paper. First, the TDOA results are measured at multiple moments using the cross-ambiguity function (CAF), and the localization equation set is established based on the World Geodetic System (WGS)-84 earth ellipsoid model. Then, the initial location result can be obtained by solving the equation set through the Newton iteration method. Finally, the high-precision location result after eliminating the mirrored location is obtained after the single moment localization based on the initial location. Simulation experiments and real measured data processing results verify the effectiveness of the proposed method. It still has good robustness under the condition of large measurement errors and deviations from the prior initial values.


Sign in / Sign up

Export Citation Format

Share Document