A Five-Axis Machining Error Simulator for Rotary-Axis Geometric Errors Using Commercial Machining Simulation Software

2017 ◽  
Vol 11 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Soichi Ibaraki ◽  
◽  
Ibuki Yoshida ◽  

This paper presents a simulator that graphically presents the influence of rotary-axis geometric errors on the geometry of a finished workpiece. Commercial machining simulation software is employed for application to arbitrary five-axis tool paths. A five-axis kinematic model is implemented with the simulator to calculate the influence of rotary-axis geometric errors. The machining error simulation is demonstrated for 1) the cone frustum machining test described in ISO 10791-7:2015 [1], and 2) the pyramid-shaped machining test proposed by some of the authors in [2]. The influences of the possible geometric errors are simulated in advance. By comparing the measured geometry of the finished workpiece to the simulated profiles, major error causes are identified without numerical fitting to the machine’s kinematic model.

2021 ◽  
Vol 5 (2) ◽  
pp. 51
Author(s):  
Zongze Li ◽  
Hiroki Ogata ◽  
Ryuta Sato ◽  
Keiichi Shirase ◽  
Shigehiko Sakamoto

A cubic-machining test has been proposed to evaluate the geometric errors of rotary axes in five-axis machine tools using a 3 × 3 zone area in the same plane with different tool postures. However, as only the height deviation among the machining zones is detected by evaluating the test results, the machining test results are expected to be affected by some error parameters of tool sides, such as tool length and profile errors, and there is no research investigation on how the tool side error influences the cubic-machining test accuracy. In this study, machining inaccuracies caused by tool length and tool profile errors were investigated. The machining error caused by tool length error was formulated, and an intentional tool length error was introduced in the simulations and actual machining tests. As a result, the formulated and simulated influence of tool length error agreed with the actual machining results. Moreover, it was confirmed that the difference between the simulation result and the actual machining result can be explained by the influence of the tool profile error. This indicates that the accuracy of the cubic-machining test is directly affected by tool side errors.


2020 ◽  
Vol 31 (8) ◽  
pp. 085007
Author(s):  
Ruijun Liang ◽  
Wei Li ◽  
Zhiqiang Wang ◽  
Lei He

2013 ◽  
Vol 422 ◽  
pp. 242-246
Author(s):  
Hong Jun Zhang ◽  
Jian Guang Li ◽  
Tian Wei Zhang

Using MATLAB for development tools,we has developed a set of end mills CNC grinding programming system by analysis the end mills grinding craft ,research on cutter location trajectory calculation and post-processing technology. Meanwhile, build a five-axis tool grinder grinding simulation processing by VERICUT(a kind of CNC machining simulation software), through the edge grinding simulation , we confirm the cutter location trajectory and the NC code is errorless.


2014 ◽  
Vol 625 ◽  
pp. 402-407
Author(s):  
Jeng Nan Lee ◽  
Chen Hua She ◽  
Chyouh Wu Brian Huang ◽  
Hung Shyong Chen ◽  
Huang Kuang Kung

Owing to NAS 979 describes a cutting test for five-axis machine center with a universal spindle, several conditions for C-type machine tool have not been defined yet. This paper proposes a cutting test for a non-orthogonal swivel head and a rotary table type five-axis machine tool (C type) to evaluate its performance. The workpiece consists of 10 machining features. These features include the multi-axis simultaneous machining patterns and the positioning machining patterns. The flat end mill cutters are applied in each machining feature. Cutter location data for the test piece was generated using a commercial CAD/CAM system (UG) and converted to five-axis NC code using a postprocessor created in UG Post Builder. This UG postprocessor is verified through the developed postprocessor utilizing the modified D-H notation. It is also verified using VERICUT® solid cutting simulation software demonstrated the veracity of the generated five-axis NC code. The machining test is applicable for a variety of five-axis machine tool configurations.


2013 ◽  
Vol 670 ◽  
pp. 119-122
Author(s):  
W.G. Du ◽  
Y.Y. Guo ◽  
C. Zhao

Machining with five-axis equipment can offer manufactures many advantages, including dramatically reduced setup times, lower costs per part, more accurate machining and improved part quality. While in five-axis machining, the tool axis changes frequently, even the most experienced engineers are difficult to judge the correctness of its tool path. So in this paper, taking five-axis machine tools as the prototype, the process of building NC simulation platform was introduced by using simulation software VERICUT. After that, it introduced simulation operations, verifying the simulation platform and data simulation function. Finally, the correctness of the simulation was verified by machining experiments. Researching CNC machining process on the VERICUT platform, the research results were used in five-axis machining simulation of integrated impeller and it improved both the process capacity and efficiency of the integrated impeller greatly. This method obtained in this paper could eliminate the colliding and interference phenomenon during test cut, reduce costs, improve the efficiency of programming and shorten the manufacturing period.


2012 ◽  
Vol 6 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Cefu Hong ◽  
◽  
Soichi Ibaraki

Thermal distortions are regarded as one of the major error factors in machine tools. ISO 230-3 and ISO 10791-10 describe tests to evaluate the influence of thermal distortions caused by linear motion and spindle rotation on the Tool Center Position (TCP). However, for five-axis machine tools, no thermal test is described for a rotary axis. Therefore, in this paper, a method for observing thermally induced geometric errors of a rotary axis with a static R-test is proposed. Unlike conventional thermal tests in ISO 230-3 and ISO 10791-10, where the thermal influence on the positioning error at a single point is tested, the present test measures the thermal influence on the error motions of a rotary axis. The R-test measurement clarifies how the error motions of a rotary table change with the rotation of a swiveling axis and how they are influenced by thermal changes. The thermal influence on the error motions of a rotary axis is quantitatively parameterized by geometric errors that vary with time.


2017 ◽  
Vol 94 (1-4) ◽  
pp. 227-237 ◽  
Author(s):  
Soichi Ibaraki ◽  
Shota Tsujimoto ◽  
Yu Nagai ◽  
Yasutaka Sakai ◽  
Shigeki Morimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document