Self-Organizing Fusion Neural Networks

Author(s):  
Jung-Hua Wang ◽  
◽  
Chun-Shun Tseng ◽  
Sih-Yin Shen ◽  
Ya-Yun Jheng

This paper presents a self-organizing fusion neural network (SOFNN) effective in performing fast clustering and segmentation. Based on a counteracting learning scheme, SOFNN employs two parameters that together control the training in a counteracting manner to obviate problems of over-segmentation and under-segmentation. In particular, a simultaneous region-based updating strategy is adopted to facilitate an interesting fusion effect useful for identifying regions comprising an object in a self-organizing way. To achieve reliable merging, a dynamic merging criterion based on both intra-regional and inter-regional local statistics is used. Such extension in adjacency not only helps achieve more accurate segmentation results, but also improves input noise tolerance. Through iterating the three phases of simultaneous updating, self-organizing fusion, and extended merging, the training process converges without manual intervention, thereby conveniently obviating the need of pre-specifying the terminating number of objects. Unlike existing methods that sequentially merge regions, all regions in SOFNN can be processed in parallel fashion, thus providing great potentiality for a fully parallel hardware implementation.

Author(s):  
Lady Silk Moonlight ◽  
Fiqqih Faizah ◽  
Yuyun Suprapto ◽  
Nyaris Pambudiyatno

Background: Human face is a biometric feature. Artificial Intelligence (AI) called Artificial Neural Network (ANN) can be used in recognising such a biometric feature. In ANN, the learning process is divided into two: supervised and unsupervised learning. In supervised learning, a common method used is Backpropagation, while in the unsupervised learning, a common one is Kohonen Self Organizing Map (KSOM). However, the application of Backpropagation and KSOM need to be adjusted to improve the performance.Objective: In this study, Backpropagation and KSOM algorithms are rewritten to suit face image recognition, applied and compared to determine the effectiveness of each algorithm in solving face image recognition.Methods: In this study, the methods used and compared in the case of face image recognition are Backpropagation dan Kohonen Self Organizing Map (KSOM) Artificial Neural Network (ANN).Results: The smallest False Acceptance Rate (FAR) value of Backpropagation is 28%, and KSOM is 36%, out of 50 unregistered face images tested. While the smallest False Rejection Rate (FRR) value of Backpropagation is 22%, and KSOM is 30%, out of 50 registered face images. The fastest time for the training process using the backpropagation method is 7.14 seconds, and the fastest time for recognition is 0.71 seconds. While the fastest time for the training process using the KSOM method is 5.35 seconds, and the fastest time for recognition is 0.50 seconds.Conclusion: Backpropagation method is better in recognising face images than KSOM method, but the training process and the recognition process by KSOM method are faster than Backpropagation method due to the hidden layers. Keywords: Artificial Neural Network (ANN), Backpropagation, Kohonen Self Organizing Map (KSOM), Supervised learning, Unsupervised learning 


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jun Zhao ◽  
Xumei Chen

An intelligent evaluation method is presented to analyze the competitiveness of airlines. From the perspective of safety, service, and normality, we establish the competitiveness indexes of traffic rights and the standard sample base. The self-organizing mapping (SOM) neural network is utilized to self-organize and self-learn the samples in the state of no supervision and prior knowledge. The training steps of high convergence speed and high clustering accuracy are determined based on the multistep setting. The typical airlines index data are utilized to verify the effect of the self-organizing mapping neural network on the airline competitiveness analysis. The simulation results show that the self-organizing mapping neural network can accurately and effectively classify and evaluate the competitiveness of airlines, and the results have important reference value for the allocation of traffic rights resources.


2021 ◽  
Vol 292 ◽  
pp. 116912
Author(s):  
Rong Wang Ng ◽  
Kasim Mumtaj Begam ◽  
Rajprasad Kumar Rajkumar ◽  
Yee Wan Wong ◽  
Lee Wai Chong

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Kuei-Hsiang Chao ◽  
Bo-Jyun Liao ◽  
Chin-Pao Hung

This study employed a cerebellar model articulation controller (CMAC) neural network to conduct fault diagnoses on photovoltaic power generation systems. We composed a module array using 9 series and 2 parallel connections of SHARP NT-R5E3E 175 W photovoltaic modules. In addition, we used data that were outputted under various fault conditions as the training samples for the CMAC and used this model to conduct the module array fault diagnosis after completing the training. The results of the training process and simulations indicate that the method proposed in this study requires fewer number of training times compared to other methods. In addition to significantly increasing the accuracy rate of the fault diagnosis, this model features a short training duration because the training process only tunes the weights of the exited memory addresses. Therefore, the fault diagnosis is rapid, and the detection tolerance of the diagnosis system is enhanced.


Sign in / Sign up

Export Citation Format

Share Document