Set-Point Control of a Musculoskeletal System Under Gravity by a Combination of Feed-Forward and Feedback Manners Considering Output Limitation of Muscular Forces

2019 ◽  
Vol 31 (4) ◽  
pp. 612-620
Author(s):  
Yuki Matsutani ◽  
Kenji Tahara ◽  
Hitoshi Kino ◽  
◽  
◽  
...  

This paper proposes a new control method for musculoskeletal systems, which combines a feed-forward input with a feedback input, while considering an output limit. Our previous research proposed a set-point control that used a complementary combination of feedback using a time delay and a muscular internal force feed-forward; it achieved robust and rapid positioning with relatively low muscular contraction forces. However, in that control method, the range of motion of the musculoskeletal system was limited within a horizontal plane. In other words, that system did not consider the effect of gravity. The controller proposed in this paper can achieve the reaching movement of the musculoskeletal system without requiring accurate physical parameters under gravity. Moreover, the input of the proposed method can be prevented from becoming saturated with the output limit. This paper describes the design of the proposed controller and demonstrates the effectiveness of the proposed method based on the results of numerical simulations.

2020 ◽  
Vol 31 (23) ◽  
pp. 2583-2596
Author(s):  
John M. Boyle ◽  
Kelsey M. Hennick ◽  
Samuel G. Regalado ◽  
Jacob M. Vogan ◽  
Xiaozhu Zhang ◽  
...  

To better understand telomere length set point control in human stem cells, we generated knockout stem cell lines for TPP1 and contrasted their phenotypes with those of homozygous TPP1 L104A mutant stem cells. This comparison reveals that TPP1 L104A is not a hypomorphic allele but formally establishes TPP1 L104 as a dissociation of function mutant.


Sign in / Sign up

Export Citation Format

Share Document