scholarly journals Avances de la Tecnología Organ-on-a-chip de Riñón hacia Dispositivos de Remplazo de la Función Renal

2021 ◽  
Vol 18 (1) ◽  
pp. 1-14
Author(s):  
María Belém García San Luis ◽  
Christian Chapa González
Keyword(s):  

La enfermedad renal crónica (ERC) requiere de terapia de reemplazo renal en su última fase, la cual incluye diálisis en cualquiera de sus modalidades y trasplante de riñón. Hasta ahora, la mejor opción es el trasplante renal, sin embargo, la insuficiencia de donadores es la principal limitante, por lo que en los últimos años ha surgido la idea de suplantar la función renal con dispositivos biomédicos. El organ-on-a-chip es una de las principales tecnologías emergentes y se refiere a un sistema biomimético de órganos fisiológicos construido en un chip principalmente de microfluidos. El objetivo de esta revisión es describir los avances de los dispositivos biomédicos de remplazo de la función renal por componentes del riñón, resaltando al final los dispositivos en fases clínicas. La búsqueda de artículos giró en torno a dispositivos microfluídicos (organ-on-a-chip de riñón), que incluyen cultivos de células renales, modelos impresos 3D o bien la combinación de diferentes técnicas. La diversidad de enfoques respecto al abordaje de estudios de la función renal en un organ-on-a-chip conduce a una heterogeneidad en los resultados, sin embargo, luego de clasificar los avances según el componente renal, se proponen diferentes desafíos que deberán resolverse para avanzar en el desarrollo de dispositivos que suplan la función renal.

2021 ◽  
Author(s):  
Julio Aleman ◽  
Tugba Kilic ◽  
Luis S. Mille ◽  
Su Ryon Shin ◽  
Yu Shrike Zhang
Keyword(s):  

2021 ◽  
Author(s):  
Benjamin Fook Lun Lai ◽  
Rick Xing Ze Lu ◽  
Locke Davenport Huyer ◽  
Sachiro Kakinoki ◽  
Joshua Yazbeck ◽  
...  
Keyword(s):  

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 765
Author(s):  
Qianbin Zhao ◽  
Tim Cole ◽  
Yuxin Zhang ◽  
Shi-Yang Tang

Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell–cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 162
Author(s):  
Mathias Busek ◽  
Steffen Nøvik ◽  
Aleksandra Aizenshtadt ◽  
Mikel Amirola-Martinez ◽  
Thomas Combriat ◽  
...  

Polydimethylsiloxane (PDMS) has been used in microfluidic systems for years, as it can be easily structured and its flexibility makes it easy to integrate actuators including pneumatic pumps. In addition, the good optical properties of the material are well suited for analytical systems. In addition to its positive aspects, PDMS is well known to adsorb small molecules, which limits its usability when it comes to drug testing, e.g., in organ-on-a-chip (OoC) systems. Therefore, alternatives to PDMS are in high demand. In this study, we use thermoplastic elastomer (TPE) films thermally bonded to laser-cut poly(methyl methacrylate) (PMMA) sheets to build up multilayered microfluidic devices with integrated pneumatic micro-pumps. We present a low-cost manufacturing technology based on a conventional CO2 laser cutter for structuring, a spin-coating process for TPE film fabrication, and a thermal bonding process using a pneumatic hot-press. UV treatment with an Excimer lamp prior to bonding drastically improves the bonding process. Optimized bonding parameters were characterized by measuring the burst load upon applying pressure and via profilometer-based measurement of channel deformation. Next, flow and long-term stability of the chip layout were measured using microparticle Image Velocimetry (uPIV). Finally, human endothelial cells were seeded in the microchannels to check biocompatibility and flow-directed cell alignment. The presented device is compatible with a real-time live-cell analysis system.


Author(s):  
Fan Lei ◽  
Minhua Liang ◽  
Yang Liu ◽  
Hanhao Huang ◽  
Haofei Li ◽  
...  

Engineering ◽  
2021 ◽  
Author(s):  
Abdellah Aazmi ◽  
Hongzhao Zhou ◽  
Yuting Li ◽  
Mengfei Yu ◽  
Xiaobin Xu ◽  
...  
Keyword(s):  

2017 ◽  
Vol 7 (2) ◽  
pp. 1700550 ◽  
Author(s):  
Janna Nawroth ◽  
Julia Rogal ◽  
Martin Weiss ◽  
Sara Y. Brucker ◽  
Peter Loskill

2017 ◽  
Vol 280 ◽  
pp. S255
Author(s):  
David Bovard ◽  
Arno Knorr ◽  
Antonin Sandoz ◽  
Karsta Luettich ◽  
Stefan Frentzel ◽  
...  
Keyword(s):  

Author(s):  
Terry Ching ◽  
Yi-Chin Toh ◽  
Michinao Hashimoto ◽  
Yu Shrike Zhang

Sign in / Sign up

Export Citation Format

Share Document