scholarly journals Mechanical Strain-Enabled Reconstitution of Dynamic Environment in Organ-on-a-Chip Platforms: A Review

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 765
Author(s):  
Qianbin Zhao ◽  
Tim Cole ◽  
Yuxin Zhang ◽  
Shi-Yang Tang

Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell–cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Jason Lee ◽  
Aaron B. Baker

In vitro systems for applying mechanical strain to cultured cells are commonly used to investigate cellular mechanotransduction pathways in a variety of cell types. These systems often apply mechanical forces to a flexible membrane on which cells are cultured. A consequence of the motion of the membrane in these systems is the generation of flow and the unintended application of shear stress to the cells. We recently described a flexible system for applying mechanical strain to cultured cells, which uses a linear motor to drive a piston array to create biaxial strain within multiwell culture plates. To better understand the fluidic stresses generated by this system and other systems of this type, we created a computational fluid dynamics model to simulate the flow during the mechanical loading cycle. Alterations in the frequency or maximal strain magnitude led to a linear increase in the average fluid velocity within the well and a nonlinear increase in the shear stress at the culture surface over the ranges tested (0.5–2.0 Hz and 1–10% maximal strain). For all cases, the applied shear stresses were relatively low and on the order of millipascal with a dynamic waveform having a primary and secondary peak in the shear stress over a single mechanical strain cycle. These findings should be considered when interpreting experimental results using these devices, particularly in the case when the cell type used is sensitive to low magnitude, oscillatory shear stresses.


2010 ◽  
Vol 38 (4) ◽  
pp. 1072-1075 ◽  
Author(s):  
Daniel J. Maltman ◽  
Stefan A. Przyborski

Drug discovery programmes require accurate in vitro systems for drug screening and testing. Traditional cell culture makes use of 2D (two-dimensional) surfaces for ex vivo cell growth. In such environments, cells are forced to adopt unnatural characteristics, including aberrant flattened morphologies. Therefore there is a strong demand for new cell culture platforms which allow cells to grow and respond to their environment in a more realistic manner. The development of 3D (three-dimensional) alternative substrates for in vitro cell growth has received much attention, and it is widely acknowledged that 3D cell growth is likely to more accurately reflect the in vivo tissue environments from which cultured cells are derived. 3D cell growth techniques promise numerous advantages over 2D culture, including enhanced proliferation and differentiation of stem cells. The present review focuses on the development of scaffold technologies for 3D cell culture.


Author(s):  
Liang Ma ◽  
Lei Gao ◽  
Yichen Luo ◽  
Huayong Yang ◽  
Bin Zhang ◽  
...  

A porous polymer-based three-dimensional (3D) cell culture device has been developed as an in vitro tissue model system for the cytotoxicity of anticancer drug test. The device had two chambers connected in tandem, each loaded with a 3D scaffold made of highly biocompatible poly (lactic acid) (PLA). Hepatoma cells (HepG2) and glioblastoma multiforme (GBM) cancer cells were cultured in the two separate porous scaffolds. A peristaltic pump was adopted to realize a perfusion cell culture. In this study, we focus on cell viability inside the 3D porous scaffolds under flow-induced shear stress effects. A flow simulation was conducted to predict the shear stress based on a realistic representation of the porous structure. The simulation results were correlated to the cell variability measurements at different flow rates. It is shown that the modeling approach presented in this paper can be useful for shear stress predication inside porous scaffolds and the computational fluid dynamics model can be an effective way to optimize the operation parameters of perfused 3D cell culture devices.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S27-S40 ◽  
Author(s):  
T. Kobayashi ◽  
T. Kigawa ◽  
M. Mizuno ◽  
T. Watanabe

ABSTRACT There are several in vitro methods to analyse the function of the adenohypophysis or the mechanisms of its regulation. The present paper deals with single cell culture, organ culture and short term incubation techniques by which the morphology and gonadotrophin-secreting function of the adenohypophysis were studied. In trypsin-dispersed cell culture, the adenohypophysial cells showed extensive propagation to form numerous cell colonies and finally develop into a confluent monolayer cell sheet covering completely the surface of culture vessels. Almost all of the cultured cells, however, became chromophobic, at least at the end of the first week of cultivation, when gonadotrophin was detectable neither in the culture medium nor in the cells themselves. After the addition of the hypothalamic extract, gonadotrophin became detectable again, and basophilic or PAS-positive granules also reappeared within the cells, suggesting that the gonadotrophs were stimulated by the extract to produce gonadotrophin. In organ culture and short term incubation, the incorporation of [3H] leucine into the adenohypophysial cells in relation to the addition of hypothalamic extract was examined. It was obvious that the ability to incorporate [3H] leucine into the gonadotrophs in vitro was highly dependent upon the presence of the hypothalamic extract.


1992 ◽  
Vol 20 (1) ◽  
pp. 138-143
Author(s):  
Maria Carrara ◽  
Lorenzo Cima ◽  
Roberto Cerini ◽  
Maurizio Dalle Carbonare

A method has been developed whereby cosmetic products which are not soluble in water or in alcohol can be brought into contact with cell cultures by being placed in a cell culture insert, which is then placed in the cell culture well. Preliminary experiments were carried out with L929 cells, and cytotoxicity was evaluated by measuring neutral red uptake and the total protein content of treated cultured cells. Encouraging results were obtained in comparisons of three cosmetic emulsions and of one emulsion containing a range of concentrations of two preservatives, Kathon CG and Bronopol.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Jeger-Madiot ◽  
Lousineh Arakelian ◽  
Niclas Setterblad ◽  
Patrick Bruneval ◽  
Mauricio Hoyos ◽  
...  

AbstractIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


2021 ◽  
Author(s):  
Mattia Saggioro ◽  
Stefania D'Agostino ◽  
Anna Gallo ◽  
Sara Crotti ◽  
Sara D'Aronco ◽  
...  

Three-dimensional (3D) culture systems are progressively getting attention given their potential in overcoming limitations of the classical 2D in vitro systems. Among different supports for 3D cell culture, hydrogels (HGs)...


2021 ◽  
Author(s):  
Shigehiro Hashimoto ◽  
Hiroki Yonezawa

Abstract A cell deforms and migrates on the scaffold under mechanical stimuli in vivo. In this study, a cell with division during shear stress stimulation has been observed in vitro. Before and after division, both migration and deformation of each cell were analyzed. To make a Couette-type shear flow, the medium was sandwiched between parallel disks (the lower stationary culture-disc and the upper rotating disk) with a constant gap. The wall shear stress (1.5 Pa < τ < 2 Pa) on the surface of the lower culture plate was controlled by the rotational speed of the upper disc. Myoblasts (C2C12: mouse myoblast cell line) were used in the test. After cultivation without flow for 24 hours for adhesion of the cells to the lower disk, constant τ was applied to the cells in the incubator for 7 days. The behavior of each cell during shear was tracked by time-lapse images observed by an inverted phase contrast microscope placed in the incubator. Experimental results show that each cell tends to divide after higher activities: deformation and migration. The tendency is remarkable at the shear stress of 1.5 Pa.


Sign in / Sign up

Export Citation Format

Share Document